1,129 research outputs found

    Carpal Tunnel Syndrome Caused by Space Occupying Lesions

    Get PDF
    PURPOSE: To evaluate the diagnosis and treatment of the carpal tunnel syndrome (CTS) due to space occupying lesions (SOL). MATERIALS and METHODS: Eleven patients and 12 cases that underwent surgery for CTS due to SOL were studied retrospectively. We excluded SOL caused by bony lesions, such as malunion of distal radius fracture, volar lunate dislocation, etc. the average age was 51 years. There were 3 men and 8 women. Follow-up period was 12 to 40 months with an average of 18 months. the diagnosis of CTS was made clinically and electrophysiologically. in patients with swelling or tenderness on the area of wrist flexion creases, magnetic resonance imaging (MRI) and/or computed tomogram (CT) were additionally taken as well as the carpal tunnel view. We performed conventional open transverse carpal ligament release and removal of SOL. RESULTS: the types of lesion confirmed by pathologic examination were; tuberculosis tenosynovitis in 3 cases, nonspecific tenosynovitis in 2 cases, and gout in one case. Other SOLs were tumorous condition in five cases, and abnormal palmaris longus hypertrophy in 1 case. Tumorous conditions were due to calcifying mass in 4 cases and ganglion in 1 case. Following surgery, all cases showed alleviation of symptom without recurrence or complications. CONCLUSION: in cases with swelling or tenderness on the area of wrist flexion creases, it is important to obtain a carpal tunnel view, and MRI and/or CT should be supplemented in order to rule out SOLs around the carpal tunnel, if necessary.ope

    DHP-Derivative and Low Oxygen Tension Effectively Induces Human Adipose Stromal Cell Reprogramming

    Get PDF
    BACKGROUND AND METHODS: In this study, we utilized a combination of low oxygen tension and a novel anti-oxidant, 4-(3,4-dihydroxy-phenyl)-derivative (DHP-d) to directly induce adipose tissue stromal cells (ATSC) to de-differentiate into more primitive stem cells. De-differentiated ATSCs was overexpress stemness genes, Rex-1, Oct-4, Sox-2, and Nanog. Additionally, demethylation of the regulatory regions of Rex-1, stemnesses, and HIF1alpha and scavenging of reactive oxygen species were finally resulted in an improved stem cell behavior of de-differentiate ATSC (de-ATSC). Proliferation activity of ATSCs after dedifferentiation was induced by REX1, Oct4, and JAK/STAT3 directly or indirectly. De-ATSCs showed increased migration activity that mediated by P38/JUNK and ERK phosphorylation. Moreover, regenerative efficacy of de-ATSC engrafted spinal cord-injured rats and chemical-induced diabetes animals were significantly restored their functions. CONCLUSIONS/SIGNIFICANCE: Our stem cell remodeling system may provide a good model which would provide insight into the molecular mechanisms underlying ATSC proliferation and transdifferentiation. Also, these multipotent stem cells can be harvested may provide us with a valuable reservoir of primitive and autologous stem cells for use in a broad spectrum of regenerative cell-based disease therapy

    Antioxidant and Anti-Inflammatory Effects of Shungite against Ultraviolet B Irradiation-Induced Skin Damage in Hairless Mice

    Get PDF
    As fullerene-based compound applications have been rapidly increasing in the health industry, the need of biomedical research is urgently in demand. While shungite is regarded as a natural source of fullerene, it remains poorly documented. Here, we explored the in vivo effects of shungite against ultraviolet B- (UVB-) induced skin damage by investigating the physiological skin parameters, immune-redox profiling, and oxidative stress molecular signaling. Toward this, mice were UVB-irradiated with 0.75โ€‰mW/cm2 for two consecutive days. Consecutively, shungite was topically applied on the dorsal side of the mice for 7 days. First, we found significant improvements in the skin parameters of the shungite-treated groups revealed by the reduction in roughness, pigmentation, and wrinkle measurement. Second, the immunokine profiling in mouse serum and skin lysates showed a reduction in the proinflammatory response in the shungite-treated groups. Accordingly, the redox profile of shungite-treated groups showed counterbalance of ROS/RNS and superoxide levels in serum and skin lysates. Last, we have confirmed the involvement of Nrf2- and MAPK-mediated oxidative stress pathways in the antioxidant mechanism of shungite. Collectively, the results clearly show that shungite has an antioxidant and anti-inflammatory action against UVB-induced skin damage in hairless mice

    Treatment of Two Level Artificial Disc Replacement for Cervical Spondylotic Myelopathy

    Get PDF
    Cervical spondylotic myelopathy (CSM) is a common spinal disorder caused by compression of the spinal cord, due to degeneration of the cervical spine. We investigated post-operative results and suggest artificial disc replacement (ADR) as an effective surgical method for treating CSM. We present the case of a 36-year-old man, with nuchal pain; severe paresthesia of both upper and lower extremities; and pain, motor weakness, and difficulty in fine motor control of both hands. A cervical X-ray showed spondylotic changes at the C5-6, C6-7 level and MRI revealed cord compression at the C5-6, C6-7 level. ADR was performed at the C5-6, C6-7 level. After the surgery, the motor weakness of both upper extremities and paresthesia of both aspects improved. In addition, the JOA score and Nurick grade improved. A post-operative X-ray showed well positioned instruments, and post- operative MRI displayed no lesions of cord compression. Anterior cervical discectomy and fusion (ACDF) is widely accepted as a leading treatment for CSM, but ACDF may cause adjacent segment disease (ASD). We suggest that ADR also can represent a good surgical procedure for the management of multilevel spinal cord compression, as it can preserve cervical motion while avoiding AS
    • โ€ฆ
    corecore