39 research outputs found

    Global Stabilization of Triangular Systems with Time-Delayed Dynamic Input Perturbations

    Full text link
    A control design approach is developed for a general class of uncertain strict-feedback-like nonlinear systems with dynamic uncertain input nonlinearities with time delays. The system structure considered in this paper includes a nominal uncertain strict-feedback-like subsystem, the input signal to which is generated by an uncertain nonlinear input unmodeled dynamics that is driven by the entire system state (including unmeasured state variables) and is also allowed to depend on time delayed versions of the system state variable and control input signals. The system also includes additive uncertain nonlinear functions, coupled nonlinear appended dynamics, and uncertain dynamic input nonlinearities with time-varying uncertain time delays. The proposed control design approach provides a globally stabilizing delay-independent robust adaptive output-feedback dynamic controller based on a dual dynamic high-gain scaling based structure.Comment: 2017 IEEE International Carpathian Control Conference (ICCC

    High-Dimensional Controller Tuning through Latent Representations

    Full text link
    In this paper, we propose a method to automatically and efficiently tune high-dimensional vectors of controller parameters. The proposed method first learns a mapping from the high-dimensional controller parameter space to a lower dimensional space using a machine learning-based algorithm. This mapping is then utilized in an actor-critic framework using Bayesian optimization (BO). The proposed approach is applicable to complex systems (such as quadruped robots). In addition, the proposed approach also enables efficient generalization to different control tasks while also reducing the number of evaluations required while tuning the controller parameters. We evaluate our method on a legged locomotion application. We show the efficacy of the algorithm in tuning the high-dimensional controller parameters and also reducing the number of evaluations required for the tuning. Moreover, it is shown that the method is successful in generalizing to new tasks and is also transferable to other robot dynamics

    Differential Analysis of Triggers and Benign Features for Black-Box DNN Backdoor Detection

    Full text link
    This paper proposes a data-efficient detection method for deep neural networks against backdoor attacks under a black-box scenario. The proposed approach is motivated by the intuition that features corresponding to triggers have a higher influence in determining the backdoored network output than any other benign features. To quantitatively measure the effects of triggers and benign features on determining the backdoored network output, we introduce five metrics. To calculate the five-metric values for a given input, we first generate several synthetic samples by injecting the input's partial contents into clean validation samples. Then, the five metrics are computed by using the output labels of the corresponding synthetic samples. One contribution of this work is the use of a tiny clean validation dataset. Having the computed five metrics, five novelty detectors are trained from the validation dataset. A meta novelty detector fuses the output of the five trained novelty detectors to generate a meta confidence score. During online testing, our method determines if online samples are poisoned or not via assessing their meta confidence scores output by the meta novelty detector. We show the efficacy of our methodology through a broad range of backdoor attacks, including ablation studies and comparison to existing approaches. Our methodology is promising since the proposed five metrics quantify the inherent differences between clean and poisoned samples. Additionally, our detection method can be incrementally improved by appending more metrics that may be proposed to address future advanced attacks.Comment: Published in the IEEE Transactions on Information Forensics and Securit

    Differentiable Optimization Based Time-Varying Control Barrier Functions for Dynamic Obstacle Avoidance

    Full text link
    Control barrier functions (CBFs) provide a simple yet effective way for safe control synthesis. Recently, work has been done using differentiable optimization (diffOpt) based methods to systematically construct CBFs for static obstacle avoidance tasks between geometric shapes. In this work, we extend the application of diffOpt CBFs to perform dynamic obstacle avoidance tasks. We show that by using the time-varying CBF (TVCBF) formulation, we can perform obstacle avoidance for dynamic geometric obstacles. Additionally, we show how to extend the TVCBF constraint to consider measurement noise and actuation limits. To demonstrate the efficacy of our proposed approach, we first compare its performance with a model predictive control based method and a circular CBF based method on a simulated dynamic obstacle avoidance task. Then, we demonstrate the performance of our proposed approach in experimental studies using a 7-degree-of-freedom Franka Research 3 robotic manipulator

    Aerial Manipulator Force Control Using Control Barrier Functions

    Full text link
    This article studies the problem of applying normal forces on a surface, using an underactuated aerial vehicle equipped with a dexterous robotic arm. A force-motion high-level controller is designed based on a Lyapunov function encompassing alignment and exerted force errors. This controller is coupled with a Control Barrier Function constraint under an optimization scheme using Quadratic Programming. This aims to enforce a prescribed relationship between the approaching motion for the end-effector and its alignment with the surface, thus ensuring safe operation. An adaptive low-level controller is devised for the aerial vehicle, capable of tracking velocity commands generated by the high-level controller. Simulations are presented to demonstrate the force exertion stability and safety of the controller in cases of large disturbances

    A Deep Neural Network Algorithm for Linear-Quadratic Portfolio Optimization with MGARCH and Small Transaction Costs

    Full text link
    We analyze a fixed-point algorithm for reinforcement learning (RL) of optimal portfolio mean-variance preferences in the setting of multivariate generalized autoregressive conditional-heteroskedasticity (MGARCH) with a small penalty on trading. A numerical solution is obtained using a neural network (NN) architecture within a recursive RL loop. A fixed-point theorem proves that NN approximation error has a big-oh bound that we can reduce by increasing the number of NN parameters. The functional form of the trading penalty has a parameter >0\epsilon>0 that controls the magnitude of transaction costs. When \epsilon is small, we can implement an NN algorithm based on the expansion of the solution in powers of \epsilon. This expansion has a base term equal to a myopic solution with an explicit form, and a first-order correction term that we compute in the RL loop. Our expansion-based algorithm is stable, allows for fast computation, and outputs a solution that shows positive testing performance

    The Impact of Visual Impairment on Quality of Life

    Get PDF
    Our goal was to identify and describe factors relating to quality of life (QOL) in subjects with low vision and blindness in Iran's Sistan and Baluchestan Province. This cross-sectional study was carried out in randomly selected subjects with vision disability who were covered by the Zahedan Welfare Organization in Zahedan, Iran. The following factors related to visual impairment were evaluated: visual field (VF), visual acuity (VA), and stereopsis. Data were collected using a demographic questionnaire and the Influence of Vision Impairment (IVI) questionnaire. One-hundred and twenty-one patients were enrolled for participation in the study. T-test analyses indicated that the mean QOL score for women was significantly lower than that for men (P < 0.001). Mann-Whitney U tests indicated that mean social (P = 0.003) and leisure (P = 0.009) QOL scores were significantly lower in participants without stereopsis. In addition, participants with tunnel vision scored lower on the mobility and self-care categories (P < 0.001) than others. The results of this study indicate that providing education, providing employment, improving, and expanding social programs for the blind and individuals with low vision people, especially women, are necessary.脗
    corecore