77 research outputs found

    A record of volcanic eruptions over the past 2,200 years from Vostok firn cores, central East Antarctica

    Get PDF
    Introduction: The products of volcanic eruptions found in the snow, firn and ice deposits of the polar ice sheets are precious sources of information on the volcanic forcing of the climate system in the recent or remote past. On the other hand, the layers containing the traces of well-known eruptions serve as absolute age markers that help to construct the depth-age scale for the snow-firn thickness.Methods: In this study we present new records of the sulfate concentrations and electrical conductivity (ECM) from three shallow (up to 70 m depth) firn cores drilled in the vicinity of Vostok station (central East Antarctica).Results: In the non-sea-salt sulfate and ECM profiles we were able to identify 68 peaks that can be interpreted as traces of volcanic events.Discussion: 22 of these peaks can be unambiguously attributed to well-known volcanic eruptions (including Tambora 1816 CE, Huaynaputina 1601 CE, Samalas 1258 CE, Ilopango 541 CE and others), which allowed to construct a robust depth-age scale for the cores. 37 events have their counterparts in other Antarctic cores, but cannot be associated with welldated eruptions. Finally, 9 peaks do not have analogues in the other cores, i.e., they may be traces of so far unknown volcanic events. According to the newly constructed depth-age function, the deepest studied firn layers (70.20 m) are dated by 192 BCE

    Атмосферная циркуляция в индоокеанском секторе Восточной Антарктиды за последние 200 лет по данным изучения химического состава снежно‑фирнового покрова

    Get PDF
    Spatial and temporal variability of a sea‑salt aerosol (Na+) concentration was investigated in snow‑firn cores and snow pits taken at four sites of the Indian Ocean sector of the East Antarctica (along a profile between stations Progress and Vostok: PV‑10, NVFL‑1, SW‑42, and the Vostok point). In long annually resolved Na+ records, we had revealed the following periodicities: 17 to 95‑year (Vostok) and 29 to 52‑year (NVFL‑1), while the shorter records are characterized by 8‑year periodicity. The Na+ concentrations decrease as the snow accu‑ mulation increases (especially, at the Vostok station), and this is evidence for a presence of «dilution effect» in the sites with the great part of «dry precipitation». The closest relationship was revealed between changes in flows of Na+ at points SW‑42, and PV‑10. Variability of the Na+ fluxes had been linked to the circulation indices (AAO, PDO, SOI, MEI, SPO) and the sea level pressure in the Southern Hemisphere, as well as to occurrence of Elementary Circulation Mechanisms (ECM). The revealed irregularity of the Na+ precipitation over the area under investigation is caused by different atmospheric circulation patterns as well as by influ‑ ence of basic Action Centers of the Atmosphere (ACA) in the Southern Hemisphere. The closest relationship is found to take place with South Pacific ACA (Vostok, 1976–2009) and with the South Indian ACA (SW‑42 and PV‑10). A presence of distant atmospheric relations (including one with El Nino) had been revealed for the inland areas. Changes in features of the atmospheric circulation in the South Indian Ocean over the last 200‑year period have been reconstructed on the basis of summarized Na+ records from the Vostok station area. Distinctive feature of the atmospheric circulation is the 40‑year periodicity with its increasing intensity during the following periods: 1805–1820, 1830–1860, 1890–1900, 1940–1950, and 1980–2000. In addition, we had revealed that changes in the atmospheric circulation in the Indian Ocean (Southern Hemisphere) were synchronous with similar variability of the circulation in the Siberian (Northern Hemisphere) sector.По данным изучения химического состава снежно-фирнового покрова в индоокеанском секторе Восточной Антарктиды установлены пространственно-временные изменения аккумуляции морского аэрозоля (Na+). Исследованы корреляционные связи аккумуляции Na+ с индексами циркуляции и полем давления Южного полушария, а также элементарными циркуляционными механизмами. Впервые выполнена реконструкция интенсивности региональной циркуляции за последние 200 лет

    Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years

    Get PDF
    Changes in sea ice conditions and atmospheric circulation over the Southern Ocean play an important role in modulating Antarctic climate. However, observations of both sea ice and wind conditions are limited in Antarctica and the Southern Ocean, both temporally and spatially, prior to the satellite era (1970 onwards). Ice core chemistry data can be used to reconstruct changes over annual, decadal, and millennial timescales. To facilitate sea ice and wind reconstructions, the CLIVASH2k (CLimate Variability in Antarctica and the Southern Hemisphere over the past 2000 years) working group has compiled a database of two species, sodium [Na+] and sulfate [SO2− 4 ], commonly measured ionic species. The database (https://doi.org/10.5285/9E0ED16E-F2AB4372-8DF3-FDE7E388C9A7; Thomas et al., 2022) comprises records from 105 Antarctic ice cores, containing records with a maximum age duration of 2000 years. An initial filter has been applied, based on evaluation against sea ice concentration, geopotential height (500 hPa), and surface wind fields to identify sites suitable for reconstructing past sea ice conditions, wind strength, or atmospheric circulation

    Химический состав приземного атмосферного аэрозоля в Баренцбурге (архипелаг Шпицберген) по результатам многолетних исследований

    Get PDF
    The chemical composition (ions, elements, polycyclic aromatic hydrocarbons) of aerosol and gaseous impurities (SO2, HNO3, HCl, NH3) in the surface layer of the atmosphere in Barentsburg, located on the Western Svalbard island (Svalbard archipelago), is analyzed. Atmospheric aerosol and gaseous impurities brought to the Arctic from middle latitudes and deposited on snow and ice not only interact with various natural objects, but also spread to long distances with melting dirty snow and ice. Air sampling was carried out following to methodology adopted by the international networks of the atmospheric monitoring programs in South-East Asia (EANET) and Europe (EMEP). In 2011-2015, the observations of the chemical composition of the atmospheric ground layer were performed daily during the light season (April–September), and monthly from April 2016 to 2018. The largest total ion concentrations were observed in 2011–2012. Seasonal variability of ion concentrations in the aerosol was characterized by high values in the cold period (October–February) and low values in the warm one (May–June). High values of the coefficient of correlation between ions Na+ and Cl− (r = 0,93) as well as between Mg2+ and Cl−  (r = 0,81) throughout the year show that the main source of the aerosol is the sea surface. The significant correlation between ions K+, NO3-, NH4+, SO42−, K+, SO42− in the polar night point to the influence of local sources: coal mining at the mine and its3 combustion at thermal power plants. Emission of polycyclic aromatic hydrocarbons and the gaseous impurities (SO2, HNO3) into the atmosphere, especially during the polar night, is also influenced by local sources. Among the elements the maximum enrichment of the aerosol was revealed for As, Cr, Zn, Mo, Cd, Sn, Sb, W, and Pb with a low content of Cd, Sn, Sb, W, and Pb in the coal, sludge and on the underlying surface. On the basis of the elemental composition of the aerosol and the back-trajectory analysis, it was shown that the air masses enriched in heavy metals come to the area of the Barentsburg settlement from middle latitudes.Прослежена межгодовая (2011–2017 гг.) и сезонная (2016–2018 гг.) изменчивость компонентов химического состава (ионы, элементы, полициклические ароматические углеводороды) атмосферного аэрозоля и газообразных примесей (SO2, HNO3, HCl, NH3) в приземной атмосфере западной части Российской Арктики (пос. Баренцбург на Шпицбергене)

    Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years

    Get PDF
    Changes in sea ice conditions and atmospheric circulation over the Southern Ocean play an important role in modulating Antarctic climate. However, observations of both sea ice and wind conditions are limited in Antarctica and the Southern Ocean, both temporally and spatially, prior to the satellite era (1970 onwards). Ice core chemistry data can be used to reconstruct changes over annual, decadal, and millennial timescales. To facilitate sea ice and wind reconstructions, the CLIVASH2k (CLimate Variability in Antarctica and the Southern Hemisphere over the past 2000 years) working group has compiled a database of two species, sodium [Na+] and sulfate [SO2− 4 ], commonly measured ionic species. The database (https://doi.org/10.5285/9E0ED16E-F2AB4372-8DF3-FDE7E388C9A7; Thomas et al., 2022) comprises records from 105 Antarctic ice cores, containing records with a maximum age duration of 2000 years. An initial filter has been applied, based on evaluation against sea ice concentration, geopotential height (500 hPa), and surface wind fields to identify sites suitable for reconstructing past sea ice conditions, wind strength, or atmospheric circulation

    Organic Carbon in the Bottom Sediments of Lake Baikal: Geochemical Processes of Burial and Balance Values

    No full text
    This is the first study of dissolved organic matter (DOM) at the Lake Baikal water-bottom interface. High-resolution profiles of dissolved organic carbon (DOC) were obtained simultaneously with dissolved inorganic carbon (DIC), total dissolved carbon, cations (Na+, K+, Ca2+, Mg2+, Fe2+, and Mn2+), and anions (HCO3−, Cl−, NO3−, and SO42−) in the pore water of Lake Baikal deepwater oxidized sediments. We evaluated the DOC fluxes quantitatively and qualitatively. They changed their direction twice under different redox conditions in the sediments (at the redox interfaces). The study revealed that the mobilization of DOC in anoxic sediments was closely related to the reductive dissolution of Fe(III) minerals, and the oxidized surface lake sediments represented an effective DOC trap binding DOC to ferric minerals. Redox conditions appeared to be the main regulator of the DOC exchange. Oxygen conditions led to the uptake of DOC by sediments (31–78 mmol C m−2 yr−1), i.e., the Lake Baikal sediments are a sink of DOC. The DOC flux was approximately 25–35% of the carbon flux at the sediment–water interface. The results of this study allow for a better understanding of the nature and properties of DOC in freshwater ecosystems and compensate for the underestimation of DOC in the internal carbon cycle of the lake

    Polycyclic Aromatic Hydrocarbons in the Atmosphere of the Southern Baikal Region (Russia): Sources and Relationship with Meteorological Conditions

    No full text
    This article presents the results of the long-term studies at two stations located in the city of Irkutsk and the Listvyanka settlement of the southern Baikal region (East Siberia) concerning the concentration of polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosol. The studies revealed the seasonal and interannual dynamics in the distribution of PAHs in aerosols from urban (source) and rural (receptor) areas. We carried out a comprehensive analysis of weather conditions such as wind direction, relative humidity, air temperature, and atmospheric pressure. The analysis determined high correlations between air temperature, atmospheric pressure, temperature inversions, and PAHs at the monitoring stations. The average annual concentrations of PAHs in the abnormally warm 2020 were three times lower than the average values obtained in the cold 2016. The toxic equivalent concentrations (BaPeq) increased from summer to winter with an increase in the contribution from benzo(a)pyrene, one of the most toxic and hazardous compounds of this class of organic substances. Four-, five- and six-ring PAHs mainly predominated in aerosol; the proportion of two- and three-ring PAHs increased from the warm season to the cold season. Diagnostic ratios of PAHs identified the main sources of air pollution by this class of compounds: combustion of coal, liquid fuel and firewood, vehicle emissions, and wildfires. The percentage of the transport of anthropogenic aerosol containing PAHs from industrial sources of the Southern Baikal region towards Lake Baikal was 65 to 71%

    Atmospheric Deposition on the Southwest Coast of the Southern Basin of Lake Baikal

    No full text
    A precipitation monitoring station in Listvyanka was set up to determine the potential impact of the coastal area on the state of the adjacent air environment above Lake Baikal on its southwest coast. This article presents the results of studying the chemical composition of atmospheric deposition (aerosols and precipitation) at this station in 2020, and of their comparison with the data from previous years (from 2000 to 2019). In 2020, the ionic composition of atmospheric aerosols and precipitation had changed compared to previous years. In the modern period, the total amount of ions in aerosols, accounting for 0.46 ± 0.40 μg∙m−3, was lower by an order of magnitude than between 2000 and 2004. The average annual total amount of ions in precipitation in Listvyanka was almost unchanged from the average values in 2000–2010 and was 10% lower than that from 2011 to 2019 (7.3 mg/L). The ratio of major ions of sulphates and ammonium changed in the aerosol composition: compared to the period from 2000 to 2004, in 2020, the contribution of ammonium ions had decreased significantly, from 32% to 24%; the contribution of sulphates had increased to 43%, and the contribution of calcium had increased from 8 to 13%. Since 2010, the contribution of K+ ions has increased to 8–10%, indicating the effect of smoke aerosols from wildfires. In precipitation, despite the dominance of sulphates (26%) and calcium (18%) throughout the year, the contribution of nitrates increases to 19% during the cold season (from October to March), while the contribution of ammonium ions and hydrogen ions increases to 13% and 17%, respectively, in the warm season (from April to September). In 2020, as in previous research years, the acidity of precipitation at the Listvyanka station was elevated (pH 5.1 ± 0.5); 50% of precipitation in 2020 had pH ˂ 5. We quantified ions in atmospheric aerosols and precipitation on the underlying surface of the coastal southwestern part of Lake Baikal. Ion fluxes with precipitation were the highest in the warm season, which corresponds to the annual maximum precipitation. Unlike previous years (from 2000 to 2010 and from 2011 to 2019), wet deposition of most ions—especially calcium, ammonium and nitrates—had decreased in 2020. There was a 35-fold decrease in nitrogen fluxes and a 5-fold decrease in sulphur fluxes in aerosols, as well as 1.6-fold and 1.3-fold decreases, respectively, in precipitation
    corecore