38 research outputs found

    Functional differences of Toll-like receptor 4 in osteogenesis, adipogenesis and chondrogenesis in human bone marrow-derived mesenchymal stem cells

    Get PDF
    Multipotent human bone marrow-derived mesenchymal stem cells (hMSCs) are promising candidates for bone and cartilage regeneration. Toll-like receptor 4 (TLR4) is expressed by hMSCs and is a receptor for both exogenous and endogenous danger signals. TLRs have been shown to possess functional differences based on the species (human or mouse) they are isolated from therefore, the effects of knockdown of TLR4 were evaluated in humans during the differentiation of MSCs into bone, fat and chondrocyte cells in vitro. We investigated the expression profile of TLR4 during the differentiation of hMSCs into three different lineages on days 7, 14 and 21 and assessed the differentiation potential of the cells in the presence of lipopolysaccharide (LPS, as an exogenous agonist) and fibronectin fragment III-1c (FnIII-1c, as an endogenous agonist). TLR4 expression increased following the induction of hMSC differentiation into all three lineages. Alkaline phosphatase activity revealed that FnIII-1c accelerated calcium deposition on day 7, whereas LPS increased calcium deposition on day 14. Chondrogenesis increased in the presence of LPS; however, FnIII-1c acted as a reducer in the late stage. TLR4 silencing led to decreased osteogenesis and increased adipogenesis. Furthermore, Wnt5a expression was inversely related to chondrogenesis during the late stage of differentiation. We suggest that understanding the functionality of TLR4 (in the presence of pathogen or stress signal) during the differentiation of hMSCs into three lineages would be useful for MSC-based treatments. © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd

    Microarray analysis identification of key pathways and interaction network of differential gene expressions during osteogenic differentiation

    Get PDF
    Background: Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into three lineages. They are suitable sources for cell-based therapy and regenerative medicine applications. This study aims to evaluate the hub genes and key pathways of differentially expressed genes (DEGs) related to osteogenesis by bioinformatics analysis in three different days. The DEGs were derived from the three different days compared with day 0. Results: Gene expression profiles of GSE37558 were obtained from the Gene Expression Omnibus (GEO) database. A total of 4076 DEGs were acquired on days 8, 12, and 25. Gene ontology (GO) enrichment analysis showed that the non-canonical Wnt signaling pathway and lipopolysaccharide (LPS)-mediated signaling pathway were commonly upregulated DEGs for all 3 days. KEGG pathway analysis indicated that the PI3K-Akt and focal adhesion were also commonly upregulated DEGs for all 3 days. Ten hub genes were identified by CytoHubba on days 8, 12, and 25. Then, we focused on the association of these hub genes with the Wnt pathways that had been enriched from the protein-protein interaction (PPI) by the Cytoscape plugin MCODE. Conclusions: These findings suggested further insights into the roles of the PI3K/AKT and Wnt pathways and their association with osteogenesis. In addition, the stem cell microenvironment via growth factors, extracellular matrix (ECM), IGF1, IGF2, LPS, and Wnt most likely affect osteogenesis by PI3K/AKT. © 2020, The Author(s)

    Inhibited enzymatic reaction of crosslinked lactate oxidase through a pH-dependent mechanism

    Get PDF
    Lactate oxidase (LOx), recognized to selectively catalyze the lactate oxidation in complex matrices, has been highlighted as preferable biorecognition element for the development of lactate biosensors. In a previous work, we have demonstrated that LOx crosslinking on a modified screen-printed electrode results in a dual range lactate biosensor, with one of the analysis linear range (4 to 50 mM) compatible with lactate sweat levels. It was advanced that such behavior results from an atypical substrate inhibition process. To understand such inhibition phenomena, this work relies in the study of LOx structure when submitted to increased substrate concentrations. The results found by fluorescence spectroscopy and dynamic light scattering of LOx solutions, evidenced conformational changes of the enzyme, occurring in presence of inhibitory substrate concentrations. Therefore, the inhibition behavior found at the biosensor, is an outcome of LOx structural alterations as result of a pH-dependent mechanism promoted at high substrate concentrations.Spanish Ministry of Science and Innovation (MICINN), Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (FEDER) (TEC20013-40561-P and MUSSEL RTC-2015-4077-2). Hugo Cunha-Silva would like to acknowledge funding from the Spanish Ministry of Economy (BES-2014-068214

    A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems

    Get PDF
    The human brain intrinsically operates with a large number of synapses, more than 10(15). Therefore, one of the most critical requirements for constructing artificial neural networks (ANNs) is to achieve extremely dense synaptic array devices, for which the crossbar architecture containing an artificial synaptic node at each cross is indispensable. However, crossbar arrays suffer from the undesired leakage of signals through neighboring cells, which is a major challenge for implementing ANNs. In this work, we show that this challenge can be overcome by using Pt/TaOy/nanoporous (NP) TaOx/Ta memristor synapses because of their self-rectifying behavior, which is capable of suppressing unwanted leakage pathways. Moreover, our synaptic device exhibits high non-linearity (up to 10(4)), low synapse coupling (S.C, up to 4.00 x 10(-5)), acceptable endurance (5000 cycles at 85 degrees C), sweeping (1000 sweeps), retention stability and acceptable cell uniformity. We also demonstrated essential synaptic functions, such as long-term potentiation (LTP), long-term depression (LTD), and spiking-timing-dependent plasticity (STDP), and simulated the recognition accuracy depending on the S.C for MNIST handwritten digit images. Based on the average S.C (1.60 x 10(-4)) in the fabricated crossbar array, we confirmed that our memristive synapse was able to achieve an 89.08% recognition accuracy after only 15 training epochs

    Cohort profile: the German Diabetes Study (GDS)

    Full text link
    corecore