22 research outputs found
Mixed matrix membranes based on MIL-101 metalâorganic frameworks in polymer of intrinsic microporosity PIM-1
This work presents a study on mixed matrix membranes (MMMs) of the polymer of intrinsic microporosity PIM-1, embedding the crystalline Cr-terephthalate metal-organic framework (MOF), known as MIL-101. Different kinds of MIL-101 were used: MIL-101 with an average particle size of ca. 0.2 ”m, NanoMIL-101 (ca. 50 nm), ED-MIL-101 (MIL-101 functionalized with ethylene diamine) and NH2-MIL-101 (MIL-101 synthesized using 2-aminoterephthalic acid instead of terephthalic acid). Permeability, diffusion and solubility coefficients and their corresponding ideal selectivities were determined for the gases He, H2, O2, N2, CH4 and CO2 on the âas-castâ samples and after alcohol treatment. The performance of the MMMs was evaluated in relation to the Maxwell model. The addition of NH2-MIL-101 and ED-MIL-101 does not increase the membrane performance for the CO2/N2 and CO2/CH4 separation because of an initial decrease in selectivity at low MOF content, whereas the O2 and N2 permeability both increase for NH2-MIL-101. In contrast, MIL-101 and NanoMIL-101 cause a strong shift to higher permeability in the Robeson diagrams for all gas pairs, especially for CO2, without significant change in selectivity. Unprecedented CO2 permeabilities up to 35,600 Barrer were achieved, which are among the highest values reached with PIM-1 based mixed matrix membranes. For various gas pairs, the permeability and selectivity were far above the Robeson upper bound after alcohol treatment. Short to medium time aging shows that alcohol treated samples with MIL-101 maintain a systematically higher permeability in time. Mixed gas permeation experiments on an aged as-cast sample with 47 vol% MIL-101 reveal that the MMM sample maintains an excellent combination of permeability and selectivity, far above the Robeson upper bound (CO2 = 3500â3800 Barrer, CO2/N2 = 25â27; CO2/CH4 = 21â24). This suggests good perspectives for these materials in thin film composite membranes for real applications.</p
Mixed matrix membranes based on MIL-101 metalâorganic frameworks in polymer of intrinsic microporosity PIM-1
This work presents a study on mixed matrix membranes (MMMs) of the polymer of intrinsic microporosity PIM-1, embedding the crystalline Cr-terephthalate metal-organic framework (MOF), known as MIL-101. Different kinds of MIL-101 were used: MIL-101 with an average particle size of ca. 0.2 ”m, NanoMIL-101 (ca. 50 nm), ED-MIL-101 (MIL-101 functionalized with ethylene diamine) and NH2-MIL-101 (MIL-101 synthesized using 2-aminoterephthalic acid instead of terephthalic acid). Permeability, diffusion and solubility coefficients and their corresponding ideal selectivities were determined for the gases He, H2, O2, N2, CH4 and CO2 on the âas-castâ samples and after alcohol treatment. The performance of the MMMs was evaluated in relation to the Maxwell model. The addition of NH2-MIL-101 and ED-MIL-101 does not increase the membrane performance for the CO2/N2 and CO2/CH4 separation because of an initial decrease in selectivity at low MOF content, whereas the O2 and N2 permeability both increase for NH2-MIL-101. In contrast, MIL-101 and NanoMIL-101 cause a strong shift to higher permeability in the Robeson diagrams for all gas pairs, especially for CO2, without significant change in selectivity. Unprecedented CO2 permeabilities up to 35,600 Barrer were achieved, which are among the highest values reached with PIM-1 based mixed matrix membranes. For various gas pairs, the permeability and selectivity were far above the Robeson upper bound after alcohol treatment. Short to medium time aging shows that alcohol treated samples with MIL-101 maintain a systematically higher permeability in time. Mixed gas permeation experiments on an aged as-cast sample with 47 vol% MIL-101 reveal that the MMM sample maintains an excellent combination of permeability and selectivity, far above the Robeson upper bound (CO2 = 3500â3800 Barrer, CO2/N2 = 25â27; CO2/CH4 = 21â24). This suggests good perspectives for these materials in thin film composite membranes for real applications.</p
A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation
European Union's Seventh Framework Program (FP7/2007-2013) under Grant agreement no. 608490. project M4CO2. CNR/FCT Italian/Portuguese Bilateral Project 2015-2016 "Advanced studies of the transport properties and gas separation by polymers of intrinsic microporosity (PIMs) and Ionic Liquid Gel Membranes via novel methods" and the CNR-CAS Bilateral Agreement 2016-2018 "Innovative polymeric membranes for pervaporation and advanced gas and vapour separations".A novel method to determine the individual diffusion coefficients of gases in a mixture during their permeation through polymeric membranes is described. The method was developed in two independent laboratories, using rubbery PebaxŸ and glassy HyflonŸ AD60X membrane samples as standards, and validated using the Tröger's base containing Polymer of Intrinsic Microporosity, PIM-EA-TB. Monitoring of the permeate composition in real time by a quadrupole mass spectrometer allowed the analysis of the permeation transient for gas mixtures. Two operation modes, either with a vacuum in the permeate and a direct connection to the mass spectrometer via a heated restriction, or using a sweeping gas and a heated capillary sample inlet, give excellent agreement with the traditional time lag method for single gases. A complete overview of the method development, identification of the critical parameters, instruments calibration, data elaboration and estimation of the experimental accuracy are provided. Validation with PIM-EA-TB, shows that the method can also successfully detect anomalous phenomena, related to pressure and concentration dependency of the transport properties, physical aging or penetrant-induced dilation. Rapid online analysis of the permeate composition makes the method also very suitable for routine mixed gas permeability measurements.publishersversionpublishe
Synthesis and transport properties of novel MOF/PIM-1/MOF sandwich membranes for gas separation
Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H2, O2, N2, CH4, CO2 were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability