20 research outputs found

    Synthesis, Characterization and Antimicrobial Investigations of (Ag, Cu, Ni, Co,Mn andHg)Complexes With Schiff Base Derived From PVA andErythro-Ascorbic Acid Derivative

    Get PDF
    The aim of this work is the synthesis of new Schiff base derived from PVA and Erythro-ascorbic acid derivative (pentulosono-?-lactone-2,3-enedianisoate) and its metal complexes of biological significance. All synthesized compounds were characterized by Thin layer chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR, 13CNMR and mass spectra. The synthesized Schiff base & its metal complexes were screened for theirinvitro antimicrobial activity against five pathogenic bacteria (Escherichia coli, Shigella dysentery,Klebsiellapneumonae,Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast).The biological activity ofall complexes is higher than free Schiff base ligand andfollows the order: polymer < pol-Mn< pol-Ni< pol- Co ? pol-Cu ? pol-Ag ? pol-Hg.This means that metal chelation significantly affects the antimicrobial behavior of the organic ligand. Keywords: Schiff base, polymer metal complexes, antibacterial, antifungal, activity

    Synthesis and Charactrization of New Schiff Base Derived from PVA and Erythroascorbic Acid Derivative and Study Its Effect on the Activity of ACh Enzyme (In Vitro)

    Get PDF
    Schiff base derived from PVA and Erythroascorbic acid derivative (pentulosono-?-lactone-2, 3-enedianisoate) was synthesized and characterized by Thin Layer Chromatography (TLC) and FTIR spectra, aldehyde was also characterized by (U.V-Vis), 1HNMR, 13CNMR and mass spectra. The inhibitory effect of prepared polymer on the activity of human serum Cholinesrerase has been studied in vitro. The polymer showed a remarkable activity at low concentration (4.5*10-3 – 4.5*10-8 M). Keywords: Schiff base, PVA, Acetylcholinesterase

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Impact of the COVID-19 pandemic on patients with paediatric cancer in low-income, middle-income and high-income countries: a multicentre, international, observational cohort study

    Get PDF
    OBJECTIVES: Paediatric cancer is a leading cause of death for children. Children in low-income and middle-income countries (LMICs) were four times more likely to die than children in high-income countries (HICs). This study aimed to test the hypothesis that the COVID-19 pandemic had affected the delivery of healthcare services worldwide, and exacerbated the disparity in paediatric cancer outcomes between LMICs and HICs. DESIGN: A multicentre, international, collaborative cohort study. SETTING: 91 hospitals and cancer centres in 39 countries providing cancer treatment to paediatric patients between March and December 2020. PARTICIPANTS: Patients were included if they were under the age of 18 years, and newly diagnosed with or undergoing active cancer treatment for Acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, Wilms' tumour, sarcoma, retinoblastoma, gliomas, medulloblastomas or neuroblastomas, in keeping with the WHO Global Initiative for Childhood Cancer. MAIN OUTCOME MEASURE: All-cause mortality at 30 days and 90 days. RESULTS: 1660 patients were recruited. 219 children had changes to their treatment due to the pandemic. Patients in LMICs were primarily affected (n=182/219, 83.1%). Relative to patients with paediatric cancer in HICs, patients with paediatric cancer in LMICs had 12.1 (95% CI 2.93 to 50.3) and 7.9 (95% CI 3.2 to 19.7) times the odds of death at 30 days and 90 days, respectively, after presentation during the COVID-19 pandemic (p<0.001). After adjusting for confounders, patients with paediatric cancer in LMICs had 15.6 (95% CI 3.7 to 65.8) times the odds of death at 30 days (p<0.001). CONCLUSIONS: The COVID-19 pandemic has affected paediatric oncology service provision. It has disproportionately affected patients in LMICs, highlighting and compounding existing disparities in healthcare systems globally that need addressing urgently. However, many patients with paediatric cancer continued to receive their normal standard of care. This speaks to the adaptability and resilience of healthcare systems and healthcare workers globally

    Corporate governance in the Middle East and North Africa: A systematic review of current trends and opportunities for future research

    No full text

    Effects of race and ethnicity on perinatal outcomes in high-income and upper-middle-income countries: an individual participant data meta-analysis of 2 198 655 pregnancies

    No full text
    Background: Existing evidence on the effects of race and ethnicity on pregnancy outcomes is restricted to individual studies done within specific countries and health systems. We aimed to assess the impact of race and ethnicity on perinatal outcomes in high-income and upper-middle-income countries, and to ascertain whether the magnitude of disparities, if any, varied across geographical regions. Methods: For this individual participant data (IPD) meta-analysis we used data from the International Prediction of Pregnancy Complications (IPPIC) Network of studies on pregnancy complications; the full dataset comprised 94 studies, 53 countries, and 4 539 640 pregnancies. We included studies that reported perinatal outcomes (neonatal death, stillbirth, preterm birth, and small-for-gestational-age babies) in at least two racial or ethnic groups (White, Black, south Asian, Hispanic, or other). For our two-step random-effects IPD meta-analysis, we did multiple imputations for confounder variables (maternal age, BMI, parity, and level of maternal education) selected with a directed acyclic graph. The primary outcomes were neonatal mortality and stillbirth. Secondary outcomes were preterm birth and a small-for-gestational-age baby. We estimated the association of race and ethnicity with perinatal outcomes using a multivariate logistic regression model and reported this association with odds ratios (ORs) and 95% CIs. We also did a subgroup analysis of studies by geographical region. Findings: 51 studies from 20 high-income and upper-middle-income countries, comprising 2 198 655 pregnancies, were eligible for inclusion in this IPD meta-analysis. Neonatal death was twice as likely in babies born to Black women than in babies born to White women (OR 2·00, 95% CI 1·44-2·78), as was stillbirth (2·16, 1·46-3·19), and babies born to Black women were at increased risk of preterm birth (1·65, 1·46-1·88) and being small for gestational age (1·39, 1·13-1·72). Babies of women categorised as Hispanic had a three-times increased risk of neonatal death (OR 3·34, 95% CI 2·77-4·02) than did those born to White women, and those born to south Asian women were at increased risk of preterm birth (OR 1·26, 95% CI 1·07-1·48) and being small for gestational age (1·61, 1·32-1·95). The effects of race and ethnicity on preterm birth and small-for-gestational-age babies did not vary across regions. Interpretation: Globally, among underserved groups, babies born to Black women had consistently poorer perinatal outcomes than White women after adjusting for maternal characteristics, although the risks varied for other groups. The effects of race and ethnicity on adverse perinatal outcomes did not vary by region. Funding: National Institute for Health and Care Research, Wellbeing of Women

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    No full text
    Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality
    corecore