19 research outputs found

    Glycophenotype of prostatic carcinomas.

    Get PDF
    The factors that affect the progression of prostatic carcinoma are poorly understood, but it is known that carbohydrate antigens on the tumour cell surface play a role in the transforming and metastatic processes. The present report aimed to perform a comparative, lectin-histochemical study of benign and carcinomatous prostates, using a battery of lectins, in combination with monoclonal antibodies against Lewis antigens, and a semi quantitative study, to investigate the changes in glycosylation patterns that occur in prostatic carcinoma. Blocks from 27 necropsy cases of prostatic carcinoma were sectioned and stained with H+E, fifteen biotinylated lectins chosen to probe for a wide range of oligosaccharide sequences within several categories of glycoprotein glycans, using a lectin-biotin avidin-peroxidase method, and monoclonal antibodies against Lewisa, sialyl Lewisa and sialyl Lewisx antigens. The glycophenotype of prostatic carcinoma differed from that of the noncancerous prostate in revealing more intense staining with the following lectins (AAA, UEA-1, DBA, WFA, VVA, HPA, BSA-1B4, MPA, ECA, AHA, and CTA), while the binding patterns of (GNA and NPA) were almost similar in both prostatic carcinoma and the noncancerous prostate. Lewis antigens are found to be expressed in prostatic carcinomas but not in the noncancerous prostate. The observations of this study suggest that the gylcophenotype of transformed prostatic cells was modified. It showed a moderate increase in, and changing patterns of, fucosylation and galactosylation, increased branching of side chains and sharp rise in 2 deoxy, 2 acetamido galactosylation and masking process by sialylation, especially by ÃŽÄ…2-3 and ÃŽÄ…2-6 linkages. All these changes in the glycosylation pattern of the transformed prostatic cells were observed on O-glycans, no changes were observed on N-glycans

    Glycophenotype of prostatic carcinomas.

    No full text
    The factors that affect the progression of prostatic carcinoma are poorly understood, but it is known that carbohydrate antigens on the tumour cell surface play a role in the transforming and metastatic processes. The present report aimed to perform a comparative, lectin-histochemical study of benign and carcinomatous prostates, using a battery of lectins, in combination with monoclonal antibodies against Lewis antigens, and a semi quantitative study, to investigate the changes in glycosylation patterns that occur in prostatic carcinoma. Blocks from 27 necropsy cases of prostatic carcinoma were sectioned and stained with H+E, fifteen biotinylated lectins chosen to probe for a wide range of oligosaccharide sequences within several categories of glycoprotein glycans, using a lectin-biotin avidin-peroxidase method, and monoclonal antibodies against Lewisa, sialyl Lewisa and sialyl Lewisx antigens. The glycophenotype of prostatic carcinoma differed from that of the noncancerous prostate in revealing more intense staining with the following lectins (AAA, UEA-1, DBA, WFA, VVA, HPA, BSA-1B4, MPA, ECA, AHA, and CTA), while the binding patterns of (GNA and NPA) were almost similar in both prostatic carcinoma and the noncancerous prostate. Lewis antigens are found to be expressed in prostatic carcinomas but not in the noncancerous prostate. The observations of this study suggest that the gylcophenotype of transformed prostatic cells was modified. It showed a moderate increase in, and changing patterns of, fucosylation and galactosylation, increased branching of side chains and sharp rise in 2 deoxy, 2 acetamido galactosylation and masking process by sialylation, especially by ÃŽÄ…2-3 and ÃŽÄ…2-6 linkages. All these changes in the glycosylation pattern of the transformed prostatic cells were observed on O-glycans, no changes were observed on N-glycans

    Micronutrients

    No full text

    Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils

    No full text
    Background and Aims The lack of knowledge about key traits in field environments is a major constraint to germplasm improvement and crop management because waterlogging-prone environments are highly diverse and complex, and the mechanisms of tolerance to waterlogging include a large range of traits. A model is proposed that waterlogging tolerance is a product of tolerance to anaerobiosis and high microelement concentrations. This is further evaluated with the aim of prioritizing traits required for waterlogging tolerance of wheat in the field. Methods Waterlogging tolerance mechanisms of wheat are evaluated in a range of diverse environments through a review of past research in Australia and India; this includes selected soils and plant data, including plant growth under waterlogged and drained conditions in different environments. Measurements focus on changes in redox potential and concentrations of diverse elements in soils and plants during waterlogging. Key Results (a) Waterlogging tolerance of wheat in one location often does not relate to another, and (b) element toxicities are often a major constraint in waterlogged environments. Important element toxicities in different soils during waterlogging include Mn, Fe, Na, Al and B. This is the first time that Al and B toxicities have been indicated for wheat in waterlogged soils in India. These results support and extend the well-known interactions of salinity/Na and waterlogging/hypoxia tolerance. Conclusions Diverse element toxicities (or deficiencies) that are exacerbated during waterlogging are proposed as a major reason why waterlogging tolerance at one site is often not replicated at another. Recommendations for germplasm improvement for waterlogging tolerance include use of inductively coupled plasma analyses of soils and plants
    corecore