1,546 research outputs found
Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak
Interaction between the mass circulation within a mesoscale convective complex (MCC) and a direct mass circulation in the entrance region of an upper tropospheric polar jet streak was examined within the isentropic structure to investigate mechanisms responsible for linking these two scales of motion. The results establish that latent heating in the MCC modifies the direct mass circulation in the jet streak entrance region through the diabatically induced components of ageostrophic motion analyzed within isentropic coordinates. Within the strong mesoscale mass circulation of each MCC, strong horizontal mass flux convergence into the MCC at low levels is balanced by strong horizontal mass flux divergence away from the convergence at upper levels. Locations of large diabatic heating rates correspond well to the MCC position for each case; diabatic heating forces the upward vertical branch for the mesoscale mass circulation
Present status of the software for computer control in the CERN ISR project
A multi-programming system has been written to schedule the various application programs and to exploit the hardware attached to the CERN ISR control computer system. This paper describes certain features of the system, in particular those that concern its operation, as well as a synopsis of the applications
Fabrication of quantum point contacts by engraving GaAs/AlGaAs-heterostructures with a diamond tip
We use the all-diamond tip of an atomic force microscope for the direct
engraving of high quality quantum point contacts in
GaAs/AlGaAs-heterostructures. The processing time is shortened by two orders of
magnitude compared to standard silicon tips. Together with a reduction of the
line width to below 90 nm the depletion length of insulating lines is reduced
by a factor of two with the diamond probes. The such fabricated defect free
ballistic constrictions show well resolved conductance plateaus and the 0.7
anomaly in electronic transport measurements.Comment: 3 pages, 3 figure
The detection of ultra-relativistic electrons in low Earth orbit
Aims. To better understand the radiation environment in low Earth orbit
(LEO), the analysis of in-situ observations of a variety of particles, at
different atmospheric heights, and in a wide range of energies, is needed.
Methods. We present an analysis of energetic particles, indirectly detected by
the Large Yield RAdiometer (LYRA) instrument on board ESA's Project for
On-board Autonomy 2 (PROBA2) satellite as background signal. Combining
Energetic Particle Telescope (EPT) observations with LYRA data for an
overlapping period of time, we identified these particles as electrons with an
energy range of 2 to 8 MeV. Results. The observed events are strongly
correlated to geo-magnetic activity and appear even during modest disturbances.
They are also well confined geographically within the L=4-6 McIlwain zone,
which makes it possible to identify their source. Conclusions. Although highly
energetic particles are commonly perturbing data acquisition of space
instruments, we show in this work that ultra-relativistic electrons with
energies in the range of 2-8 MeV are detected only at high latitudes, while not
present in the South Atlantic Anomaly region.Comment: Topical Issue: Flares, CMEs and SEPs and their space weather impacts;
20 pages; 7 figures; Presented during 13th European Space Weather Week, 201
Evaluation of the synoptic and mesoscale predictive capabilities of a mesoscale atmospheric simulation system
The overall performance characteristics of a limited area, hydrostatic, fine (52 km) mesh, primitive equation, numerical weather prediction model are determined in anticipation of satellite data assimilations with the model. The synoptic and mesoscale predictive capabilities of version 2.0 of this model, the Mesoscale Atmospheric Simulation System (MASS 2.0), were evaluated. The two part study is based on a sample of approximately thirty 12h and 24h forecasts of atmospheric flow patterns during spring and early summer. The synoptic scale evaluation results benchmark the performance of MASS 2.0 against that of an operational, synoptic scale weather prediction model, the Limited area Fine Mesh (LFM). The large sample allows for the calculation of statistically significant measures of forecast accuracy and the determination of systematic model errors. The synoptic scale benchmark is required before unsmoothed mesoscale forecast fields can be seriously considered
- …