67 research outputs found

    Phenothiazines and their Evolving Roles in Clinical Practice: A Narrative Review.

    Get PDF
    Phenothiazines, a diverse class of drugs, can be used to treat multiple mental health and physical conditions. Phenothiazines have been used for decades to treat mental illnesses, including schizophrenia, mania in bipolar disorder, and psychosis. Additionally, these drugs offer relief for physical illnesses, including migraines, hiccups, nausea, and vomiting in both adults and children. Further research is needed to prove the efficacy of phenothiazines in treating physical symptoms. Phenothiazines are dopaminergic antagonists that inhibit D2 receptors with varying potency. High potency phenothiazines such as perphenazine are used to treat various psychiatric conditions such as the positive symptoms of schizophrenia, the symptoms of psychosis, and mania that can occur with bipolar disorder. Low/mid potency phenothiazines such as chlorpromazine antipsychotic drugs that have been used to treat schizophrenia and schizophrenia-like disorders since the 1950s and are utilized in numerous disease states. The present investigation aims to elucidate the effects of phenothiazines in clinical practice

    Methamphetamine Use: A Narrative Review of Adverse Effects and Related Toxicities.

    Get PDF
    Methamphetamine has been labeled America\u27s most dangerous drug and has received significant public health attention. Stimulant addiction and tolerance are heavily documented in the literature; increasingly larger doses maintain euphoria in short time periods to withstand stimulant tolerance. Stimulant deaths are high in the United States and abroad. Between 2013 and 2019, deaths related to methamphetamine use quadrupled from 3,616 to 16,127. Methamphetamine use increased four-fold from 2015 to 2016. Due to this increase in methamphetamine use and its associated medical complications, the mortality rate associated with methamphetamine use has doubled over the past ten years. Cardiopulmonary symptoms include chest pain, palpitations, and shortness of breath. Methamphetamine-related myocardial infarction can also occur. Central nervous system symptoms include agitation, anxiety, delusions, hallucinations, and seizures. Methamphetamine-induced psychosis may unmask underlying psychiatric disorders. It can also cause cerebral vasculitis, which elicits cortical blindness and ischemic strokes. Methamphetamine-induced neurotoxicity in serotonergic systems is more diffuse, involving the striatum, hippocampus, septum, amygdala, and hypothalamus leading to mood changes, psychosis, and memory impairment. This narrative review will aim to highlight the adverse effects as well as the toxicity that can occur with methamphetamine use

    Aduhelm, a novel anti-amyloid monoclonal antibody, for the treatment of Alzheimer\u27s Disease: A comprehensive review.

    Get PDF
    Alzheimer\u27s disease (AD) is the most common form of dementia affecting millions of individuals, including family members who often take on the role of caregivers. This debilitating disease reportedly consumes 8% of the total United States healthcare expenditure, with medical and nursing outlays accounting for an estimated $290 billion. Cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists have historically been the most widely used pharmacologic therapies for patients with AD; however, these drugs are not curative. The present investigation describes the epidemiology, pathophysiology, risk factors, presentation, and current treatment of AD followed by the role of the novel monoclonal antibody, Adulhelm, in the treatment of AD. Currently, Adulhelm is the only Food and Drug Administration (FDA) approved drug that acts to slow the progression of this disease. Adulhelm is an anti-amyloid drug that functions by selectively binding amyloid aggregates in both the oligomeric and fibrillar states. Studies show Adulhelm may help to restore neurological function in patients with AD by reducing beta-amyloid plaques and reestablishing neuronal calcium permeability. At present, there is concern the magnitude of this drug\u27s benefit may only be statistically significant, although not clinically significant. Despite skepticism, Adulhelm has proven to significantly decrease amyloid in all cortical brain regions examined. With such high stakes and potential, further research into Adulhelm\u27s clinical efficacy is warranted in the treatment of AD

    Novel Designer Benzodiazepines: Comprehensive Review of Evolving Clinical and Adverse Effects.

    Get PDF
    As tranquilizers, benzodiazepines have a wide range of clinical uses. Recently, there has been a significant rise in the number of novel psychoactive substances, including designer benzodiazepines. Flubromazolam(8-bromo-6-(2-fluorophenyl)-1-methyl-

    Alternative Options for Complex, Recurrent Pain States Using Cannabinoids, Psilocybin, and Ketamine: A Narrative Review of Clinical Evidence

    Get PDF
    With emerging information about the potential for morbidity and reduced life expectancy with long-term use of opioids, it is logical to evaluate nonopioid analgesic treatments to manage pain states. Combinations of drugs can provide additive and/or synergistic effects that can benefit the management of pain states. In this regard, tetrahydrocannabinol (THC) and cannabidiol (CBD) modulate nociceptive signals and have been studied for chronic pain treatment. Psilocybin, commonly known as magic mushrooms , works at the serotonin receptor, 5-HT. Psilocybin has been found in current studies to help with migraines since it has a tryptamine structure and works similarly to triptans. Psilocybin also has the potential for use in chronic pain treatment. However, the studies that have looked at alternative plant-based medications such as THC, CBD, and psilocybin have been small in terms of their sample size and may not consider the demographic or genetic differences in the population because of their small sample sizes. At present, it is unclear whether the effects reported in these studies translate to the general population or even are significant. In summary, additional studies are warranted to evaluate chronic pain management with alternative and combinations of medications in the treatment of chronic pain

    Historical Pathways for Opioid Addiction, Withdrawal with Traditional and Alternative Treatment Options with Ketamine, Cannabinoids, and Noribogaine: A Narrative Review

    Get PDF
    Even as prescription opioid dispensing rates have begun to decrease, the use of illicit opioids such as heroin and fentanyl has increased. Thus, the end of the opioid epidemic is not in sight, and treating patients that are addicted to opioids remains of utmost importance. Currently, the primary pharmacotherapies used to treat opioid addiction over the long term are the opioid antagonist naltrexone, the partial-agonist buprenorphine, and the full agonist methadone. Naloxone is an antagonist used to rapidly reverse opioid overdose. While these treatments are well-established and used regularly, the gravity of the opioid epidemic necessitates that all possible avenues of treatment be explored. Therefore, in this narrative review, we analyze current literature regarding use of the alternative medications ketamine, noribogaine, and cannabinoids in treating patients suffering from opioid use disorder. Beyond its use as an anesthetic, ketamine has been shown to have many applications in several medical specialties. Of particular interest to the subject at hand, ketamine is promising in treating individuals addicted to opioids, alcohol, and cocaine. Therapeutically administered cannabinoids have been proposed for the treatment of multiple illnesses. These include, but are not limited to epilepsy, Parkinson\u27s disease, multiple sclerosis, chronic pain conditions, anxiety disorders, and addiction. The cannabinoid dronabinol has been seen to have varying effects. High doses appear to reduce withdrawal symptoms but this comes at the expense of increased adverse side effects such as sedation and tachycardia. Noribogaine is a weak MOR antagonist and relatively potent KOR agonist, which may explain the clinical anti-addictive effects. More research should be done to assess the viability of these medications for the treatment of OUD and withdrawal

    Prescription Stimulants in College and Medical Students: A Narrative Review of Misuse, Cognitive Impact, and Adverse Effects

    Get PDF
    Stimulants are effective in treating attention-deficit/hyperactivity disorder (ADHD). Psychiatrist Charles Bradley first made this discovery in 1937 when he found that children treated with amphetamines showed improvements in school performance and behavior. Between 1995 and 2008, stimulants to treat ADHD increased six-fold among American adults and adolescents at an annual rate of 6.5%. Stimulants without a prescription, known as nonmedical use or misuse, have also increased. The highest rates of nonmedical prescription drug misuse in the United States are seen most notably in young adults between 18 and 25 years, based on data from the Substance Abuse and Mental Health Services Administration in 2021. Aside from undergraduate students, nonmedical prescription stimulant use is prevalent among medical students worldwide. A recent literature review reported the utilization of stimulants without a prescription in 970 out of 11,029 medical students. The percentages of medical students across the country misusing stimulants varied from 5.2% to 47.4%. Academic enhancement, reported in 50% to 89% of college students with stimulant misuse, is the most common reason for nonmedical stimulant use. With the increasing use of stimulants among adolescents and adults, it is unclear what long-term outcomes will be since little data are available that describe differences in how side effects are experienced for prescribed and non-prescribed users. The present narrative review focuses on these adverse effects in this population and the reasonings behind misuse and nonmedical use

    Oxytocin, a Novel Treatment for Methamphetamine Use Disorder

    Get PDF
    The treatment of substance abuse with oxytocin is a novel approach to a challenging public health issue that continues to contribute to a growing economic cost for societies worldwide. Methamphetamine addiction is one of the leading causes of mortality worldwide, and despite advances in understanding the neurobiology of methamphetamine addiction, treatment options are limited. There are no medications that the Food and Drug Administration currently approves for stimulant use disorder. Off-label use of therapies for stimulant misuse include antidepressants, anxiolytics, and milder stimulants as replacement agents. Due to the shortcomings of these attempts to treat a complicated psychiatric disorder, recent attention to oxytocin therapy (OT) has gained momentum in clinical studies as a possible therapy in the context of social stress, social anxiety, social cognition, and psychosis. Oxytocin produces enhanced connectivity between cortical regions. The results from studies in rodents with OT suggest that central neuromodulation of oxytocin may be beneficial across transition states of stimulant dependence and may alleviate intense withdrawal symptoms. Studies of oxytocin in the context of other drugs of abuse, including cocaine, cannabis, and alcohol, also support the potential of oxytocin to treat stimulant use disorder, methamphetamine type. Methamphetamine abuse continues to be a significant cause of distress and dysfunction throughout the world. The effects of oxytocin on methamphetamine use outlined in this review should act as a catalyst for further investigation into the efficacy of treating stimulant use disorder, methamphetamine type with oxytocin in humans. More human-based research should initiate studies involving the long-term efficacy, side effects, and patient selection

    Naltrexone Implant for Opioid Use Disorder

    Get PDF
    The continued rise in the availability of illicit opioids and opioid-related deaths in the United States has left physicians, researchers, and lawmakers desperate for solutions to this ongoing epidemic. The research into therapeutic options for the treatment of opioid use disorder (OUD) began with the introduction of methadone in the 1960s. The approval of oral naltrexone initially showed much promise, as the drug was observed to be highly potent in antagonizing the effects of opioids while producing no opioid agonist effects of its own and having a favorable side effect profile. Patients that routinely take their naltrexone reported fewer days of heroin use and had more negative drug tests than those without treatment. Poor outcomes in OUD patients treated with naltrexone have been directly tied to short treatment time. Studies have shown that naltrexone given orally vs. as an implant at the 6-month interval showed a higher non-compliance rate among those who used oral medications at the 6-month mark and a slower return to use rate. There were concerns that naltrexone could possibly worsen negative symptoms seen in opiate use disorder related to blockade of endogenous opioids that are important for pleasurable stimuli. Studies have shown that naltrexone demonstrated no increase in levels of anxiety, depression and anhedonia in participants and another study found that those treated with naltrexone had a significant reduction in mental health-related hospitalizations. The latter study also concluded that there was no increased risk for mental health-related incidents in patients taking naltrexone via a long-acting implant. Although not yet FDA approved in the United States, naltrexone implant has shown promising results in Europe and Australia and may provide a novel treatment option for opioid addiction
    corecore