20 research outputs found

    Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort

    Get PDF
    BACKGROUND: Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. OBJECTIVES: We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. METHODS: Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000–2009 follow-up period when matching census tract–level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. RESULTS: PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. CONCLUSIONS: Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5–mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels. CITATION: Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M, Lim CC, Shanley R, Park Y, Hayes RB. 2016. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP Diet and Health cohort. Environ Health Perspect 124:484–490; http://dx.doi.org/10.1289/ehp.150967

    Assessing air quality index awareness and use in Mexico City

    No full text
    Abstract Background The Mexico City Metropolitan Area has an expansive urban population and a long history of air quality management challenges. Poor air quality has been associated with adverse pulmonary and cardiac health effects, particularly among susceptible populations with underlying disease. In addition to reducing pollution concentrations, risk communication efforts that inform behavior modification have the potential to reduce public health burdens associated with air pollution. Methods This study investigates the utilization of Mexico’s IMECA risk communication index to inform air pollution avoidance behavior among the general population living in the Mexico City Metropolitan Area. Individuals were selected via probability sampling and surveyed by phone about their air quality index knowledge, pollution concerns, and individual behaviors. Results The results indicated reasonably high awareness of the air quality index (53% of respondents), with greater awareness in urban areas, among older and more educated individuals, and for those who received air quality information from a healthcare provider. Additionally, behavior modification was less influenced by index reports as it was by personal perceptions of air quality, and there was no difference in behavior modification among susceptible and non-susceptible groups. Conclusions Taken together, these results suggest there are opportunities to improve the public health impact of risk communication through an increased focus on susceptible populations and greater encouragement of public action in response to local air quality indices

    Evaluating the U.S. Air Quality Index as a risk communication tool: Comparing associations of index values with respiratory morbidity among adults in California.

    No full text
    BackgroundThe Air Quality Index (AQI) in the United States is widely used to communicate daily air quality information to the public. While use of the AQI has led to reported changes in individual behaviors, such behavior modifications will only mitigate adverse health effects if AQI values are indicative of public health risks. Few studies have assessed the capability of the AQI to accurately predict respiratory morbidity risks.Methods and findingsIn three major regions of California, Poisson generalized linear models were used to assess seasonal associations between 1,373,165 respiratory emergency department visits and short-term exposure to multiple metrics between 2012-2014, including: daily concentrations of NO2, O3, and PM2.5; the daily reported AQI; and a newly constructed health-based air quality index. AQI values were positively associated (average risk ratio = 1.03, 95% CI 1.02-1.04) during the cooler months of the year (November-February) in all three regions when the AQI was very highly correlated with PM2.5 (R2 ≥ 0.89). During the warm season (March-October) in the San Joaquin Valley region, neither AQI values nor the individual underlying air pollutants were associated with respiratory morbidity. Additionally, AQI values were not positively associated with respiratory morbidity in the Southern California region during the warm season, despite strong associations of the individual underlying air pollutants with respiratory morbidity; in contrast, health-based index values were observed to be significantly associated with respiratory morbidity as part of an applied policy analysis in this region, with a combined risk ratio of 1.02 (95% CI: 1.01-1.03).ConclusionsIn regions where individual air pollutants are associated with respiratory morbidity, and during seasons with relatively simple air mixtures, the AQI can effectively serve as a risk communication tool for respiratory health risks. However, the predictive ability of the AQI and any other index is contingent upon the monitored values being representative of actual population exposures. Other approaches, such as health-based indices, may be needed in order to effectively communicate health risks of air pollution in regions and seasons with more complex air mixtures

    Global Health Impacts for Economic Models of Climate Change: A Systematic Review and Meta-Analysis

    No full text
    RATIONALE: Avoiding excess health damages attributable to climate change is a primary motivator for policy interventions to reduce greenhouse gas emissions. However, the health benefits of climate mitigation, as included in the policy assessment process, have been estimated without much input from health experts. OBJECTIVES: In accordance with recommendations from the National Academies in a 2017 report on approaches to update the social cost of greenhouse gases (SC-GHG), an expert panel of 26 health researchers and climate economists gathered for a virtual technical workshop in May 2021 to conduct a systematic review and meta-analysis and recommend improvements to the estimation of health impacts in economic-climate models. METHODS: Regionally-resolved effect estimates of unit increases in temperature on net all-cause mortality risk were generated through random-effects pooling of studies identified through a systematic review. RESULTS: Effect estimates, and associated uncertainties, varied by global region, but net increases in mortality risk associated with increased average annual temperatures (ranging from 0.1-1.1% per 1 degree C) was estimated for all global regions. Key recommendations for the development and utilization of health damage modules were provided by the expert panel, and include: not relying on individual methodologies in estimating health damages; incorporating a broader range of cause-specific mortality impacts; improving the climate parameters available in economic models; accounting for socio-economic trajectories and adaptation factors when estimating health damages; and carefully considering how air pollution impacts should be incorporated in economic-climate models. CONCLUSIONS: This work provides an example for how subject-matter experts can work alongside climate economists in making continued improvements to SC-GHG estimates
    corecore