7 research outputs found
Impairment of chondrogenesis and microfibrillar network in Adamtsl2 deficiency
International audienceMutations in the a disintegrin and metalloproteinase with thrombospondin motif-like 2 ( ADAMTSL2) gene are responsible for the autosomal recessive form of geleophysic dysplasia, which is characterized by short stature, short extremities, and skeletal abnormalities. However, the exact function of ADAMTSL2 is unknown. To elucidate the role of this protein in skeletal development, we generated complementary knockout (KO) mouse models with either total or chondrocyte Adamtsl2 deficiency. We observed that the Adamtsl2 KO mice displayed skeletal abnormalities reminiscent of the human phenotype. Adamtsl2 deletion affected the growth plate formation with abnormal differentiation and proliferation of chondrocytes. In addition, a TGF-β signaling impairment in limbs lacking Adamtsl2 was demonstrated. Further investigations revealed that Adamtsl2 KO chondrocytes failed to establish a microfibrillar network composed by fibrillin1 and latent TGF-β binding protein 1 fibrils. Chondrocyte Adamtsl2 KO mice also exhibited dwarfism. These studies uncover the function of Adamtsl2 in the maintenance of the growth plate ECM by modulating the microfibrillar network.-Delhon, L., Mahaut, C., Goudin, N., Gaudas, E., Piquand, K., Le Goff, W., Cormier-Daire, V., Le Goff, C. Impairment of chondrogenesis and microfibrillar network in Adamtsl2 deficiency
Overexpression of <em>Enterococcus faecalis elr</em> operon protects from phagocytosis
International audienceBackground: Mechanisms underlying the transition from commensalism to virulence in Enterococcus faecalis are not fully understood. We previously identified the enterococcal leucine-rich protein A (ElrA) as a virulence factor of E. faecalis. The elrA gene is part of an operon that comprises four other ORFs encoding putative surface proteins of unknown function. Results: In this work, we compared the susceptibility to phagocytosis of three E. faecalis strains, including a wild-type (WT), a ΔelrA strain, and a strain overexpressing the whole elr operon in order to understand the role of this operon in E. faecalis virulence. While both WT and ΔelrA strains were efficiently phagocytized by RAW 264.7 mouse macrophages, the elr operon-overexpressing strain showed a decreased capability to be internalized by the phagocytic cells. Consistently, the strain overexpressing elr operon was less adherent to macrophages than the WT strain, suggesting that overexpression of the elr operon could confer E. faecalis with additional anti-adhesion properties. In addition, increased virulence of the elr operon-overexpressing strain was shown in a mouse peritonitis model. Conclusions: Altogether, our results indicate that overexpression of the elr operon facilitates the E. faecalis escape from host immune defenses
Role of a Contactin multi‐molecular complex secreted by oligodendrocytes in nodal protein clustering in the CNS
International audienceThe fast and reliable propagation of action potentials along myelinated fibers relies on the clustering of voltage-gated sodium channels at nodes of Ranvier. Axo-glial communication is required for assembly of nodal proteins in the central nervous system, yet the underlying mechanisms remain poorly understood. Oligodendrocytes are known to support node of Ranvier assembly through paranodal junction formation. In addition, the formation of early nodal protein clusters (or prenodes) along axons prior to myelination has been reported, and can be induced by oligodendrocyte conditioned medium (OCM). Our recent work on cultured hippocampal neurons showed that OCM-induced prenodes are associated with an increased conduction velocity (Freeman et al., 2015). We here unravel the nature of the oligodendroglial secreted factors. Mass spectrometry analysis of OCM identified several candidate proteins (i.e., Contactin-1, ChL1, NrCAM, Noelin2, RPTP/Phosphacan, and Tenascin-R). We show that Contactin-1 combined with RPTP/Phosphacan or Tenascin-R induces clusters of nodal proteins along hippocampal GABAergic axons. Furthermore, Contactin-1-immunodepleted OCM or OCM from Cntn1-null mice display significantly reduced clustering activity, that is restored by addition of soluble Contactin-1. Altogether, our results identify Contactin-1 secreted by oligodendrocytes as a novel factor that may influence early steps of nodal sodium channel cluster formation along specific axon populations