6 research outputs found

    The effects of Verb Network Strengthening Treatment on a group of persons with aphasia: Replication and extension of previous findings

    Get PDF
    The current study aims to replicate and extend previous findings with a larger number of participants. Specifically, we asked whether training a set of verbs generalizes to production of 1) sentences containing trained verbs (The carpenter measures the lumber.), 2) sentence containing untrained semantically related verbs (The farmer weighs the apples.), 3) sentences unrelated to treatment (The dog watches the cat.), and 4) single word naming of nouns and verbs. Changes to Western Aphasia Battery-Revised (WAB-R) scores and responses to the CETI completed by communication partners (e.g., spouses of participants) were also evaluated

    Effects of a 12-Week Aerobic Spin Intervention on Resting State Networks in Previously Sedentary Older Adults

    Get PDF
    Objective: We have previously demonstrated that aerobic exercise improves upper extremity motor function concurrent with changes in motor cortical activity using task-based functional magnetic resonance imaging (fMRI). However, it is currently unknown how a 12-week aerobic exercise intervention affects resting-state functional connectivity (rsFC) in motor networks. Previous work has shown that over a 6-month or 1-year exercise intervention, older individuals show increased resting state connectivity of the default mode network and the sensorimotor network (Voss et al., 2010b; Flodin et al., 2017). However, the effects of shorter-term 12-week exercise interventions on functional connectivity have received less attention.Method: Thirty-seven sedentary right-handed older adults were randomized to either a 12-week aerobic, spin cycling exercise group or a 12-week balance-toning exercise group. Resting state functional magnetic resonance images were acquired in sessions PRE/POST interventions. We applied seed-based correlation analysis to left and right primary motor cortices (L-M1 and R-M1) and anterior default mode network (aDMN) to test changes in rsFC between groups after the intervention. In addition, we performed a regression analysis predicting connectivity changes PRE/POST intervention across all participants as a function of time spent in aerobic training zone regardless of group assignment.Results: Seeding from L-M1, we found that participants in the cycling group had a greater PRE/POST change in rsFC in aDMN as compared to the balance group. When accounting for time in aerobic HR zone, we found increased heart rate workload was positively associated with increased change of rsFC between motor networks and aDMN. Interestingly, L-M1 to aDMN connectivity changes were also related to motor behavior changes in both groups. Respective of M1 laterality, comparisons of all participants from PRE to POST showed a reduction in the extent of bilateral M1 connectivity after the interventions with increased connectivity in dominant M1.Conclusion: A 12-week physical activity intervention can change rsFC between primary motor regions and default mode network areas, which may be associated with improved motor performance. The decrease in connectivity between L-M1 and R-M1 post-intervention may represent a functional consolidation to the dominant M1.Topic Areas: Neuroimaging, Aging

    Changes in Cortical Activation Patterns in Language Areas following an Aerobic Exercise Intervention in Older Adults

    No full text
    Previous work has shown that older adults who evidence increased right inferior frontal gyrus (IFG) activity during language tasks show decreased sematic verbal fluency performance. The current study sought to evaluate if an aerobic exercise intervention can alter patterns of brain activity during a semantic verbal fluency task assessed by functional magnetic resonance imaging (fMRI). Thirty-two community-dwelling, sedentary older adults were enrolled to a 12-week aerobic “Spin” exercise group or a 12-week nonaerobic exercise control condition (Balance). Thirty participants completed their assigned intervention (16 Spin; 14 Balance) with pre- and postintervention assessments of a semantic verbal fluency task during fMRI and estimated VO2max testing. There was a significant increase in the change scores for estimated VO2max of the Spin group when compared to the Balance group. Semantic verbal fluency output within the scanner was also improved in the Spin group as compared to controls at postassessment. Group fMRI comparisons of IFG activity showed lower activity in the right IFG following the intervention in the aerobic Spin group when compared to the Balance group. Regression analysis of imaging data with change in both estimated VO2max and semantic verbal fluency was negatively correlated with activity in right IFG. The current work is registered as clinical trial with NCT01787292 and NCT02787655

    Influences of 12-Week Physical Activity Interventions on TMS Measures of Cortical Network Inhibition and Upper Extremity Motor Performance in Older Adults—A Feasibility Study

    No full text
    Objective: Data from previous cross-sectional studies have shown that an increased level of physical fitness is associated with improved motor dexterity across the lifespan. In addition, physical fitness is positively associated with increased laterality of cortical function during unimanual tasks; indicating that sedentary aging is associated with a loss of interhemispheric inhibition affecting motor performance. The present study employed exercise interventions in previously sedentary older adults to compare motor dexterity and measure of interhemispheric inhibition using transcranial magnetic stimulation (TMS) after the interventions.Methods: Twenty-one community-dwelling, reportedly sedentary older adults were recruited, randomized and enrolled to a 12-week aerobic exercise group or a 12-week non-aerobic exercise balance condition. The aerobic condition was comprised of an interval-based cycling “spin” activity, while the non-aerobic “balance” exercise condition involved balance and stretching activities. Participants completed upper extremity dexterity batteries and estimates of VO2max in addition to undergoing single (ipsilateral silent period—iSP) and paired-pulse interhemispheric inhibition (ppIHI) in separate assessment sessions before and after study interventions. After each intervention during which heart rate was continuously recorded to measure exertion level (load), participants crossed over into the alternate arm of the study for an additional 12-week intervention period in an AB/BA design with no washout period.Results: After the interventions, regardless of intervention order, participants in the aerobic spin condition showed higher estimated VO2max levels after the 12-week intervention as compared to estimated VO2max in the non-aerobic balance intervention. After controlling for carryover effects due to the study design, participants in the spin condition showed longer iSP duration than the balance condition. Heart rate load was more strongly correlated with silent period duration after the Spin condition than estimated VO2.Conclusions: Aging-related changes in cortical inhibition may be influenced by 12-week physical activity interventions when assessed with the iSP. Although inhibitory signaling is mediates both ppIHI and iSP measures each TMS modality likely employs distinct inhibitory networks, potentially differentially affected by aging. Changes in inhibitory function after physical activity interventions may be associated with improved dexterity and motor control at least as evidence from this feasibility study show
    corecore