4 research outputs found

    Taylor Slough Hydrology

    No full text
    Taylor Slough, in Everglades National Park, has experienced an evolution of water management infrastructure since drainage activities arrived in South Florida. This has included the excavation of canals, installation of large capacity pump stations, and a variety of operational strategies focused on resolving the conflict between managing the water level for developed areas while providing water supply for Everglades National Park. This study provides a review of water management practices and the concurrent hydrologic conditions in the Taylor Slough basin and adjacent canal system from 1961 through 2010. Analyses of flow, water level and rainfall data were divided into time periods that correspond to significant changes in structural features and operational plans. In the early 1960s, Taylor Slough was disconnected from the greater Everglades system by the construction of levees upstream. As water supply for Taylor Slough became more urgent, the Slough was connected to the regional water supply system via a network of canals and pump stations to relieve over-drained conditions. The increased water supply and pump capacity succeeded in raising water level and increasing flow and hydroperiod in the marsh

    South Florida’s Encroachment of the Sea and Environmental Transformation over the 21st Century

    No full text
    South Florida encompasses a dynamic confluence of urban and natural ecosystems strongly connected to ocean and freshwater hydrologic forcings. Low land elevation, flat topography and highly transmissive aquifers place both communities at the nexus of environmental and ecological transformation driven by rising sea level. Based on a local sea level rise projection, we examine regional inundation impacts and employ hydrographic records in Florida Bay and the southern Everglades to assess water level exceedance dynamics and landscape-relevant tipping points. Intrinsic mode functions of water levels across the coastal interface are used to gauge the relative influence and time-varying transformation potential of estuarine and freshwater marshes into a marine-dominated environment with the introduction of a Marsh-to-Ocean transformation index (MOI)

    Recent Fish Introductions Into Everglades National Park: An Unforeseen Consequence of Water Management?

    No full text
    Non-native fishes present a management challenge to maintaining Everglades National Park (ENP) in a natural state. We summarized data from long-term fish monitoring studies in ENP and reviewed the timing of introductions relative to water-management changes. Beginning in the early 1950s, management actions have added canals, altered wetland habitats by flooding and drainage, and changed inflows into ENP, particularly in the Taylor Slough/C-111 basin and Rocky Glades. The first non-native fishes likely entered ENP by the late 1960s, but species numbers increased sharply in the early 1980s when new water-management actions were implemented. After 1999, eight non-native species and three native species, all previously recorded outside of Park boundaries, were found for the first time in ENP. Several of these incursions occurred following structural and operational changes that redirected water deliveries to wetlands open to the eastern boundary canals. Once established, control non-native fishes in Everglades wetlands is difficult; therefore, preventing introductions is key to their management. Integrating actions that minimize the spread of non-native species into protected natural areas into the adaptive management process for planning, development, and operation of water-management features may help to achieve the full suite of objectives for Everglades restoration
    corecore