87 research outputs found

    Shear Stress-Relative Slip Relationship at Concrete Interfaces

    Get PDF
    This study develops a simple and rational shear stress-relative slip model of concrete interfaces with monolithic castings or smooth construction joints. In developing the model, the initial shear cracking stress and relative slip amount at peak stress were formulated from a nonlinear regression analysis using test data for push-off specimens. The shear friction strength was determined from the generalized equations on the basis of the upper-bound theorem of concrete plasticity. Then, a parametric fitting analysis was performed to derive equations for the key parameters determining the shapes of the ascending and descending branches of the shear stress-relative slip curve. The comparisons of predictions and measurements obtained from push-off tests confirmed that the proposed model provides superior accuracy in predicting the shear stress-relative slip relationship of interfacial shear planes. This was evidenced by the lower normalized root mean square error than those in Xu et al.’s model and the CEB-FIB model, which have many limitations in terms of the roughness of the substrate surface along an interface and the magnitude of equivalent normal stress

    Influence of inclined web reinforcement on reinforced concrete deep beams with web openings.

    Get PDF
    yesThis paper reports the testing of fifteen reinforced concrete deep beams with openings. All beams tested had the same overall geometrical dimensions. The main variables considered were the opening size and amount of inclined reinforcement. An effective inclined reinforcement factor combining the influence of the amount of inclined reinforcement and opening size on the structural behaviour of the beams tested is proposed. It was observed that the diagonal crack width and shear strength of beams tested were significantly dependent on the effective inclined reinforcement factor that ranged from 0 to 0.318 for the test specimens. As this factor increased, the diagonal crack width and its development rate decreased, and the shear strength of beams tested improved. Beams having effective inclined reinforcement factor more than 0.15 had higher shear strength than that of the corresponding solid beams. A numerical procedure based on the upper bound analysis of the plasticity theory was proposed to estimate the shear strength and load transfer capacity of reinforcement in deep beams with openings. Predictions obtained from the proposed formulas have a consistent agreement with test results

    Feasibility Tests on Concrete with Very-High-Volume Supplementary Cementitious Materials

    Get PDF
    The objective of this study is to examine the compressive strength and durability of very high-volume SCM concrete. The prepared 36 concrete specimens were classified into two groups according to their designed 28-day compressive strength. For the high-volume SCM, the FA level was fixed at a weight ratio of 0.4 and the GGBS level varied between the weight ratio of 0.3 and 0.5, which resulted in 70–90% replacement of OPC. To enhance the compressive strength of very high-volume SCM concrete at an early age, the unit water content was controlled to be less than 150 kg/m3, and a specially modified polycarboxylate-based water-reducing agent was added. Test results showed that as SCM ratio (RSCM) increased, the strength gain ratio at an early age relative to the 28-day strength tended to decrease, whereas that at a long-term age increased up to RSCM of 0.8, beyond which it decreased. In addition, the beneficial effect of SCMs on the freezing-and-thawing and chloride resistances of the concrete decreased at RSCM of 0.9. Hence, it is recommended that RSCM needs to be restricted to less than 0.8–0.85 in order to obtain a consistent positive influence on the compressive strength and durability of SCM concrete
    • …
    corecore