1,618 research outputs found

    Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    Get PDF
    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ~0.6 eV. High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their moving along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by spacetime inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals

    REACTION CHARACTERISTICS OF TWO WATER GAS SHIFT CATALYSTS IN A BUBBLING FLUIDIZED BED REACTOR FOR SEWGS PROCESS

    Get PDF
    Reaction characteristics of two WGS catalysts for SEWGS process were investigated in a bubbling fluidized bed reactor. The commercial low temperature WGS catalyst produced by Sรผd-chemie and new catalyst produced by spray-drying method were used as bed materials. Reaction temperature, steam/CO ratio, and gas velocity were considered as experimental variables. Moreover, long-term operation results of two WGS catalysts were compared as well

    An Environmental Monitoring System for Managing Spatiotemporal Sensor Data over Sensor Networks

    Get PDF
    In a wireless sensor network, sensors collect data about natural phenomena and transmit them to a server in real-time. Many studies have been conducted focusing on the processing of continuous queries in an approximate form. However, this approach is difficult to apply to environmental applications which require the correct data to be stored. In this paper, we propose a weather monitoring system for handling and storing the sensor data stream in real-time in order to support continuous spatial and/or temporal queries. In our system, we exploit two time-based insertion methods to store the sensor data stream and reduce the number of managed tuples, without losing any of the raw data which are useful for queries, by using the sensors' temporal attributes. In addition, we offer a method for reducing the cost of the join operations used in processing spatiotemporal queries by filtering out a list of irrelevant sensors from query range before making a join operation. In the results of the performance evaluation, the number of tuples obtained from the data stream is reduced by about 30% in comparison to a naรฏve approach, thereby decreasing the query execution time

    Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides

    Full text link
    Two-dimensional (2D) van-der-Waals semiconductors have emerged as a class of materials with promising device characteristics owing to the intrinsic bandgap. For realistic applications, the ideal is to modify the bandgap in a controlled manner by a mechanism that can be generally applied to this class of materials. Here, we report the observation of a universally tunable bandgap in the family of bulk 2H transition metal dichalcogenides (TMDs) by in situ surface doping of Rb atoms. A series of angle-resolved photoemission spectra unexceptionally shows that the bandgap of TMDs at the zone corners is modulated in the range of 0.8 ~ 2.0 eV, which covers a wide spectral range from visible to near infrared, with a tendency from indirect to direct bandgap. A key clue to understand the mechanism of this bandgap engineering is provided by the spectroscopic signature of symmetry breaking and resultant spin splitting, which can be explained by the formation of 2D electric dipole layers within the surface bilayer of TMDs. Our results establish the surface Stark effect as a universal mechanism of bandgap engineering based on the strong 2D nature of van-der-Waals semiconductors

    Increased pulsatility index of the basilar artery is a risk factor for neurological deterioration after stroke: a case control study

    Get PDF
    Background : Higher pulsatility of the middle cerebral artery (MCA) is known to be associated with stroke progression. We investigated whether pulsatility index (PI) of the basilar artery (BA) can predict neurological deterioration (ND) after acute cerebral infarction. Methods : A total of 708 consecutive patients with acute ischemic stroke who had undergone transcranial Doppler (TCD) ultrasonography were included. ND was defined as an increase in the National Institutes of Health Stroke Scale scores by two or more points after admission. The patients were categorized into quartiles according to BA PI. Multivariable logistic regression analysis was performed to examine whether BA PI is independently associated with ND. Results : BA PI was well correlated with the right (nโ€‰=ย 474, r2โ€‰=โ€‰0.573, Pโ€‰<ย 0.001) by Pearson correlation analysis although MCA PI could not be measured from right MCA (nโ€‰=ย 234, 33.05%) and left MCA (nโ€‰=ย 252, 35.59%) by TCD owing to insufficient temporal bone window. Multivariable logistic regression analysis including age, sex, cerebral atherosclerosis burden, National Institutes of Health Stroke Scale at admission, and the proportion of patients with current smoking status, hypertension, diabetes mellitus, atrial fibrillation revealed that the higher BA PI (odds ratio, 3.28; confidence interval, 1.07โ€“10.17; Pโ€‰=ย 0.038) was independently associated with ND. Conclusions : BA PI, which would be identified regardless of temporal window, could predict ND among acute stroke patients.The work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03029909, NRF-2019R1F1A1059455) and by the Korean Society of Hypertension (2019). The funding has no role in design, collection, analysis, or interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication

    Analgesic effect of highly reversible ฯ‰-conotoxin FVIA on N type Ca2+ channels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>N-type Ca<sup>2+ </sup>channels (Ca<sub>v</sub>2.2) play an important role in the transmission of pain signals to the central nervous system. ฯ‰-Conotoxin (CTx)-MVIIA, also called ziconotide (Prialt<sup>ยฎ</sup>), effectively alleviates pain, without causing addiction, by blocking the pores of these channels. Unfortunately, CTx-MVIIA has a narrow therapeutic window and produces serious side effects due to the poor reversibility of its binding to the channel. It would thus be desirable to identify new analgesic blockers with binding characteristics that lead to fewer adverse side effects.</p> <p>Results</p> <p>Here we identify a new CTx, FVIA, from the Korean <it>Conus Fulmen </it>and describe its effects on pain responses and blood pressure. The inhibitory effect of CTx-FVIA on N-type Ca<sup>2+ </sup>channel currents was dose-dependent and similar to that of CTx-MVIIA. However, the two conopeptides exhibited markedly different degrees of reversibility after block. CTx-FVIA effectively and dose-dependently reduced nociceptive behavior in the formalin test and in neuropathic pain models, and reduced mechanical and thermal allodynia in the tail nerve injury rat model. CTx-FVIA (10 ng) also showed significant analgesic effects on writhing in mouse neurotransmitter- and cytokine-induced pain models, though it had no effect on acute thermal pain and interferon-ฮณ induced pain. Interestingly, although both CTx-FVIA and CTx-MVIIA depressed arterial blood pressure immediately after administration, pressure recovered faster and to a greater degree after CTx-FVIA administration.</p> <p>Conclusions</p> <p>The analgesic potency of CTx-FVIA and its greater reversibility could represent advantages over CTx-MVIIA for the treatment of refractory pain and contribute to the design of an analgesic with high potency and low side effects.</p

    Triplet host engineering for triplet exciton management in phosphorescent organic light-emitting diodes

    Get PDF
    The device performances of green phosphorescent organic light-emitting diodes with a triplet mixed host emitting layer were correlated with the energy levels and composition of the host materials. Two hole-transport-type host materials, (4,4-N,N -dicarbazole)biphenyl (CBP) and 4,4 ,4 - tris(N-carbazolyl)triphenylamine (TCTA), were combined with two electron-transport-type host materials, 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBI) and PH1. The maximum quantum efficiency was obtained in the 5:5 mixed host in the case of TCTA:TPBI and TCTA:PH1, while CBP:PH1 showed the best performances in the 9:1 mixed host. The quantum efficiency of the green mixed host devices was improved by more than 50% compared with that of the corresponding single host devices.Grant No. RTI04-01-02 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE

    Sign-tunable anomalous Hall effect induced by two-dimensional symmetry-protected nodal structures in ferromagnetic perovskite oxide thin films

    Full text link
    Magnetism and spin-orbit coupling (SOC) are two quintessential ingredients underlying novel topological transport phenomena in itinerant ferromagnets. When spin-polarized bands support nodal points/lines with band degeneracy that can be lifted by SOC, the nodal structures become a source of Berry curvature; this leads to a large anomalous Hall effect (AHE). Contrary to three-dimensional systems that naturally host nodal points/lines, two-dimensional (2D) systems can possess stable nodal structures only when proper crystalline symmetry exists. Here we show that 2D spin-polarized band structures of perovskite oxides generally support symmetry-protected nodal lines and points that govern both the sign and the magnitude of the AHE. To demonstrate this, we performed angle-resolved photoemission studies of ultrathin films of SrRuO3_3, a representative metallic ferromagnet with SOC. We show that the sign-changing AHE upon variation in the film thickness, magnetization, and chemical potential can be well explained by theoretical models. Our study is the first to directly characterize the topological band structure of 2D spin-polarized bands and the corresponding AHE, which could facilitate new switchable devices based on ferromagnetic ultrathin films
    • โ€ฆ
    corecore