18 research outputs found

    The Egyptian wheat cultivar Gemmeiza-12 is a source of resistance against the fungus <i>Zymoseptoria tritici</i>

    Get PDF
    Background: Wheat is one of the world’s most important cereal crops. However, the fungal pathogen Zymoseptoria tritici can cause disease epidemics, leading to reduced yields. With climate change and development of new agricultural areas with suitable environments, Z. tritici may advance into geographical areas previously unaffected by this pathogen. It is currently unknown how Egyptian wheat will perform in the face of this incoming threat. This project aimed to assess the resistance of Egyptian wheat germplasm to Z. tritici, to identify cultivars with high levels of resistance and characterise the mechanism(s) of resistance present in these cultivars. Results: Eighteen Egyptian wheat cultivars were screened against two Z. tritici model isolates and exhibited a wide spectrum of responses. This ranged from resistance to complete susceptibility to one or both isolates tested. The most highly resistant cultivars from the initial screen were then tested under two environmental conditions against modern UK field isolates. Disease levels under UK-like conditions were higher, however, symptom development on the cultivar Gemmeiza-12 was noticeably slower than on other Egyptian wheats. The robustness of the resistance shown by Gemmeiza-12 was confirmed in experiments mimicking Egyptian environmental conditions, where degree of Z. tritici infection was lower. The Kompetitive allele-specific PCR (KASP) diagnostic assay suggested the presence of an Stb6 resistant allele in several Egyptian wheats including Gemmeiza-12. Infection assays using the IPO323 WT and IPO323ΔAvrStb6 mutant confirmed the presence of Stb6 in several Egyptian cultivars including Gemmeiza-12. Confocal fluorescence microscopy demonstrated that growth of the IPO323 strain is blocked at the point of stomatal penetration on Gemmeiza-12, consistent with previous reports of Stb gene mediated resistance. In addition to this R-gene mediated resistance, IPO323 spores showed lower adherence to leaves of Gemmeiza-12 compared to UK wheat varieties, suggesting other aspects of leaf physiology may also contribute to the resistance phenotype of this cultivar. Conclusion: These results indicate that Gemmeiza-12 will be useful in future breeding programs where improved resistance to Z. tritici is a priority

    Apoplastic recognition of multiple candidate effectors from the wheat pathogen Zymoseptoria tritici in the nonhost plant Nicotiana benthamiana

    Get PDF
    The fungus Zymoseptoria tritici is a strictly apoplastic, host-specific pathogen of wheat leaves and causal agent of septoria tritici blotch (STB) disease. All other plants are considered nonhosts, but the mechanism of nonhost resistance (NHR) to Z. tritici has not been addressed previously. We sought to develop Nicotiana benthamiana as a system to study NHR against Z. tritici. Fluorescence microscopy and quantitative reverse transcription polymerase chain reactions were used to establish the interaction between Z. tritici and N. benthamiana. Agrobacteriummediated transient expression was used to screen putative Z. tritici effector genes for recognition in N. benthamiana, and virus-induced gene silencing (VIGS) was employed to determine the role of two receptor-like kinases (RLKs), NbBAK1 and NbSOBIR1, in Z. tritici effector recognition. Numerous Z. tritici putative effectors (14 of 63 tested) induced cell death or chlorosis in N. benthamiana. For most, phenotypes were light-dependent and required effector secretion to the leaf apoplastic space. Moreover, effector-induced host cell death was dependent on NbBAK1 and NbSOBIR1. Our results indicate widespread recognition of apoplastic effectors from a wheat-infecting fungal pathogen in a taxonomically distant nonhost plant species presumably by cell surface immune receptors. This suggests that apoplastic recognition of multiple nonadapted pathogen effectors may contribute to NHR

    Food security in 2044:How do we control the fungal threat?

    No full text
    Plant fungal pathogens place considerable strain on agricultural productivity and threaten global food security. In recent decades, advances in crop breeding, farming practice and the agrochemical industry have allowed crop yields to keep pace with food demand. In this opinion article, we speculate on which recent technological advances will allow us to maintain this situation into the future. We take inspiration that it is 25 y since the first plant disease resistance genes were cloned, and imagine if and how agricultural control of pathogens will be achieved by the year 2044. We examine which technologies are best poised to make the jump from lab bench to field application, and propose that future control measures will likely depend on effective integrated disease management.</p

    Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs

    Get PDF
    Small RNAs play important roles in resistance to plant viruses and the complex responses against pathogens and leaf‐chewing insects. We investigated whether small RNA pathways are involved in Arabidopsis resistance against a phloem‐feeding insect, the green peach aphid (Myzus persicae). We used a 2‐wk fecundity assay to assess aphid performance on Arabidopsis RNA silencing and defence pathway mutants. Quantitative real‐time polymerase chain reaction was used to monitor the transcriptional activity of defence‐related genes in plants of varying aphid susceptibility. High‐performance liquid chromatography‐mass spectrometry was employed to measure the accumulation of the antimicrobial compound camalexin. Artificial diet assays allowed the assessment of the effect of camalexin on aphid performance. Myzus persicae produces significantly less progeny on Arabidopsis microRNA (miRNA) pathway mutants. Plants unable to process miRNAs respond to aphid infestation with increased induction of PHYTOALEXIN DEFICIENT3 (PAD3) and production of camalexin. Aphids ingest camalexin when feeding on Arabidopsis and are more successful on pad3 and cyp79b2/cyp79b3 mutants defective in camalexin production. Aphids produce less progeny on artificial diets containing camalexin. Our data indicate that camalexin functions beyond antimicrobial defence to also include hemipteran insects. This work also highlights the extensive role of the miRNA‐mediated regulation of secondary metabolic defence pathways with relevance to resistance against a hemipteran pest
    corecore