63 research outputs found

    COLT-Cancer: functional genetic screening resource for essential genes in human cancer cell lines

    Get PDF
    Genome-wide pooled shRNA screens enable global identification of the genes essential for cancer cell survival and proliferation and provide a ‘functional genetic’ map of human cancer to complement genomic studies. Using a lentiviral shRNA library targeting approximately 16 000 human genes and a newly developed scoring approach, we identified essential gene profiles in more than 70 breast, pancreatic and ovarian cancer cell lines. We developed a web-accessible database system for capturing information from each step in our standardized screening pipeline and a gene-centric search tool for exploring shRNA activities within a given cell line or across multiple cell lines. The database consists of a laboratory information and management system for tracking each step of a pooled shRNA screen as well as a web interface for querying and visualization of shRNA and gene-level performance across multiple cancer cell lines. COLT-Cancer Version 1.0 is currently accessible at http://colt.ccbr.utoronto.ca/cancer

    The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation

    Get PDF
    We thank Cowen lab members for helpful discussions. We also thank David Rogers (University of Tennessee) for sharing microarray analysis of the CAS5 homozygous mutant, and Li Ang (University of Macau) for assistance in optimizing the ChIP-Seq experiments. J.L.X. is supported by a Canadian Institutes of Health Research Doctoral award and M.D.L. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust 096072). B.T.G. holds an Ontario Graduate Scholarship. C.B. and B.J.A. are supported by the Canadian Institutes of Health Research Foundation Grants (FDN-143264 and -143265). D.J.K. is supported by a National Institute of Allergy and Infectious Diseases grant (1R01AI098450) and J.D.L.C.D. is supported by the University of Rochester School of Dentistry and Medicine PREP program (R25 GM064133). A.S. is supported by the Creighton University and the Nebraska Department of Health and Human Services (LB506-2017-55). K.H.W. is supported by the Science and Technology Development Fund of Macau S.A.R. (FDCT; 085/2014/A2). L.E.C. is supported by the Canadian Institutes of Health Research Operating Grants (MOP-86452 and MOP-119520), the Natural Sciences and Engineering Council (NSERC) of Canada Discovery Grants (06261 and 462167), and an NSERC E.W.R. Steacie Memorial Fellowship (477598).Peer reviewedPublisher PD

    A framework for mapping, visualisation and automatic model creation of signal-transduction networks

    Get PDF
    An intuitive formalism for reconstructing cellular networks from empirical data is presented, and used to build a comprehensive yeast MAP kinase network. The accompanying rxncon software tool can convert networks to a range of standard graphical formats and mathematical models

    The Temperature-Sensitive Role of Cryptococcus neoformans ROM2 in Cell Morphogenesis

    Get PDF
    ROM2 is associated with Cryptococcus neoformans virulence. We examined additional roles of ROM2 in C. neoformans and found that ROM2 plays a role in several cell functions specifically at high temperature conditions. Morphologically rom2 mutant cells demonstrated a “tear”-like shape and clustered together. A sub-population of cells had a hyperelongated phenotype at restrictive growth conditions. Altered morphology was associated with defects in actin that was concentrated at the cell periphery and with abnormalities in microtubule organization. Interestingly, the ROM2 associated defects in cell morphology, location of nuclei, and actin and microtubule organization were not observed in cells grown at temperatures below 37°C. These results indicate that in C. neoformans, ROM2 is important at restrictive temperature conditions and is involved in several cell maintenance functions

    Cdc48 and Cofactors Npl4-Ufd1 Are Important for G1 Progression during Heat Stress by Maintaining Cell Wall Integrity in Saccharomyces cerevisiae

    Get PDF
    The ubiquitin-selective chaperone Cdc48, a member of the AAA (ATPase Associated with various cellular Activities) ATPase superfamily, is involved in many processes, including endoplasmic reticulum-associated degradation (ERAD), ubiquitin- and proteasome-mediated protein degradation, and mitosis. Although Cdc48 was originally isolated as a cell cycle mutant in the budding yeast Saccharomyces cerevisiae, its cell cycle functions have not been well appreciated. We found that temperature-sensitive cdc48-3 mutant is largely arrested at mitosis at 37°C, whereas the mutant is also delayed in G1 progression at 38.5°C. Reporter assays show that the promoter activity of G1 cyclin CLN1, but not CLN2, is reduced in cdc48-3 at 38.5°C. The cofactor npl4-1 and ufd1-2 mutants also exhibit G1 delay and reduced CLN1 promoter activity at 38.5°C, suggesting that Npl4-Ufd1 complex mediates the function of Cdc48 at G1. The G1 delay of cdc48-3 at 38.5°C is a consequence of cell wall defect that over-activates Mpk1, a MAPK family member important for cell wall integrity in response to stress conditions including heat shock. cdc48-3 is hypersensitive to cell wall perturbing agents and is synthetic-sick with mutations in the cell wall integrity signaling pathway. Our results suggest that the cell wall defect in cdc48-3 is exacerbated by heat shock, which sustains Mpk1 activity to block G1 progression. Thus, Cdc48-Npl4-Ufd1 is important for the maintenance of cell wall integrity in order for normal cell growth and division

    The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity

    Get PDF
    New bioinformatic tools are needed to analyze the growing volume of DNA sequence data. This is especially true in the case of secondary metabolite biosynthesis, where the highly repetitive nature of the associated genes creates major challenges for accurate sequence assembly and analysis. Here we introduce the web tool Natural Product Domain Seeker (NaPDoS), which provides an automated method to assess the secondary metabolite biosynthetic gene diversity and novelty of strains or environments. NaPDoS analyses are based on the phylogenetic relationships of sequence tags derived from polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, respectively. The sequence tags correspond to PKS-derived ketosynthase domains and NRPS-derived condensation domains and are compared to an internal database of experimentally characterized biosynthetic genes. NaPDoS provides a rapid mechanism to extract and classify ketosynthase and condensation domains from PCR products, genomes, and metagenomic datasets. Close database matches provide a mechanism to infer the generalized structures of secondary metabolites while new phylogenetic lineages provide targets for the discovery of new enzyme architectures or mechanisms of secondary metabolite assembly. Here we outline the main features of NaPDoS and test it on four draft genome sequences and two metagenomic datasets. The results provide a rapid method to assess secondary metabolite biosynthetic gene diversity and richness in organisms or environments and a mechanism to identify genes that may be associated with uncharacterized biochemistry

    Actinomycete integrative and conjugative elements

    Get PDF
    This paper reviews current knowledge on actinomycete integrative and conjugative elements (AICEs). The best characterised AICEs, pSAM2 of Streptomyces ambofaciens (10.9 kb), SLP1 (17.3 kb) of Streptomyces coelicolor and pMEA300 of Amycolatopsis methanolica (13.3 kb), are present as integrative elements in specific tRNA genes, and are capable of conjugative transfer. These AICEs have a highly conserved structural organisation, with functional modules for excision/integration, replication, conjugative transfer, and regulation. Recently, it has been shown that pMEA300 and the related elements pMEA100 of Amycolatopsis mediterranei and pSE211 of Saccharopolyspora erythraea form a novel group of AICEs, the pMEA-elements, based on the unique characteristics of their replication initiator protein RepAM. Evaluation of a large collection of Amycolatopsis isolates has allowed identification of multiple pMEA-like elements. Our data show that, as AICEs, they mainly coevolved with their natural host in an integrated form, rather than being dispersed via horizontal gene transfer. The pMEA-like elements could be separated into two distinct populations from different geographical origins. One group was most closely related to pMEA300 and was found in isolates from Australia and Asia and pMEA100-related sequences were present in European isolates. Genome sequence data have enormously contributed to the recent insight that AICEs are present in many actinomycete genera. The sequence data also provide more insight into their evolutionary relationships, revealing their modular composition and their likely combined descent from bacterial plasmids and bacteriophages. Evidence is accumulating that AICEs act as modulators of host genome diversity and are also involved in the acquisition of secondary metabolite clusters and foreign DNA via horizontal gene transfer. Although still speculative, these AICEs may play a role in the spread of antibiotic resistance factors into pathogenic bacteria. The novel insights on AICE characteristics presented in this review may be used for the effective construction of new vectors that allows us to engineer and optimise strains for the production of commercially and medically interesting secondary metabolites, and bioactive proteins

    Signal sequence‐independent targeting of MID

    No full text

    RNA editing of transcripts of a chimeric mitochondrial gene associated with cytoplasmic male-sterility in Brassica.

    No full text
    The orf224 gene is a chimeric open reading frame associated with the Polima or pol cytoplasmic male sterility of Brassica napus. The first 58 codons and 5' upstream region of orf224 are derived from a conventional mitochondrial gene, orfB, while the origin of the remaining portion of the gene is unknown. Transcripts of the orf224 gene were found to be edited at a single site in the region of the gene that does not correspond to a known sequence. Oligonucleotides corresponding to the edited and unedited forms were shown to hybridize specifically to respective in vitro orf224 transcripts. Analysis of floral mtRNA by this method indicated that virtually all orf224 transcripts of both sterile and fertile, nuclear-restored pol cytoplasm plants are edited. Our results indicate that transcripts of novel, CMS-associated genes may be edited, but that, at least in this case, the degree of editing does not appear to be directly related to the male-sterile phenotype
    corecore