9 research outputs found

    Identification of Sperm Chromatin Proteins as Candidate Markers of Stallion Fertility

    Get PDF
    During spermatogenesis, histones are largely replaced by transition proteins and protamines in normal stallions. Incomplete nucleoprotein exchange results in the abnormal retention of histones and transition proteins, which is an indicator of poor sperm quality. Equine nucleoprotein exchange has not previously been investigated in detail, so that equine sperm chromatin quality problems, which are often responsible for poor breeding performance of stallions, are not well understood. In order to characterize chromatin remodeling events in stallion spermatogenesis and to identify proteins indicative of sperm chromatin defects, such as excessive amounts of histones, we identified antibodies that recognize equine testis-specific proteins of interest. Immunoblotting of testis and sperm protein lysates and immunofluorescence staining of histological tissue sections were used to identify candidate marker proteins of incomplete sperm chromatin maturation. Results of the study, which represents the first comprehensive characterization of the nucleoprotein exchange during spermatogenesis in the stallion, challenge the paradigm that the main function of histone H4 lysine (hyper-) acetylation (concomitant H4K5 and H4K8 acetylation) is to facilitate nucleosome ejection during spermatid nuclear elongation to allow for transition protein and protamine insertion into the chromatin. That paradigm was based on observations in mice and rats where H4 acetylation in several lysine residues occurs just prior to or during nuclear elongation. In contrast, the equine data presented here show strong acetylation of H4 in K5, K8 and K12 positions immediately after meiosis in round spermatids, independent of nuclear transition protein 1 deposition. Furthermore, results of H4K16 acetylation analyses underline the importance of this mark, which is likely mediated by DNA damage signaling pathways, emphasizing the importance of DNA repair processes for the exchange of nucleoprotein exchange in spermiogenesis and therefore, in extension, for male fertility. In addition, a revised description of the equine spermatogenic cycle is proposed here that is better aligned with human, mouse and rat spermatogenesis. Finally, the testis-specific histone variant TH2B was identified as a potential quantitative marker of equine sperm quality

    Heritable Sperm Chromatin Epigenetics: A Break to Remember

    Get PDF
    Sperm chromatin not only has a unique structure to condense and protect the paternal DNA in transit, but also provides epigenetic information that supports embryonic development. Most of the unique sperm nuclear architecture is formed during the sweeping postmeiotic chromatin remodeling events in spermiogenesis, where the majority of nucleosomes are removed and replaced by protamines. The remaining histones and other chromatin proteins are located in structurally and transcriptionally relevant positions in the genome and carry diverse post-translational modifications relevant to the control of embryonic gene expression. How such postmeiotic chromatin-based programming of sperm epigenetic information proceeds, and how susceptible the process is to modulation by exogenous factors are key questions for understanding the inheritance of acquired epigenetic marks through the male germ line. We propose that transient DNA strand breaks mediated by topoisomerase II beta and the subsequent activation of DNA damage response pathways result in defined post-translational modifications of histones in spermiogenesis. These pathways, likely along with others, may contribute to chromatin remodeling in elongating spermatids, influence chromatin-based intergenerational inheritance of epigenetic information, and may be defective in pathologies of abnormal male gametogenesis and infertility

    Pan-cancer proteogenomics connects oncogenic drivers to functional states

    Get PDF
    Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types

    Near-resonance in a System of Sub-Neptunes from TESS

    No full text
    corecore