295 research outputs found

    The Life and Times of the Parkes-Tidbinbilla Interferometer

    Full text link
    The Parkes-Tidbinbilla took advantage of a real-time radio-link connecting the Parkes and Tidbinbilla antennas to form the world's longest real-time interferometer. Built on a minuscule budget, it was an extraordinarily successful instrument, generating some 24 journal papers including 3 Nature papers, as well as facilitating the early development of the Australia Telescope Compact Array. Here we describe its origins, construction, successes, and life cycle, and discuss the future use of single-baseline interferometers in the era of SKA and its pathfinders.Comment: Accepted by Journal of Astronomical History & Heritage. arXiv admin note: substantial text overlap with arXiv:1210.098

    Adaptive Filters Revisited - RFI Mitigation in pulsar observations

    Full text link
    Pulsar detection and timing experiments are applications where adaptive filters seem eminently suitable tools for radio-frequency-interference (RFI) mitigation. We describe a novel variant which works well in field trials of pulsar observations centred on an observing frequency of 675 MHz, a bandwidth of 64 MHz and with 2-bit sampling. Adaptive filters have generally received bad press for RFI mitigation in radio astronomical observations with their most serious drawback being a spectral echo of the RFI embedded in the filtered signals. Pulsar observations are intrinsically less sensitive to this as they operate in the (pulsar period) time domain. The field trials have allowed us to identify those issues which limit the effectiveness of the adaptive filter. We conclude that adaptive filters can significantly improve pulsar observations in the presence of RFI.Comment: Accepted for publication in Radio Scienc

    An Australia telescope survey for CMB anisotropies

    Get PDF
    We have surveyed six distinct `empty fields' using the Australia Telescope Compact Array in an ultra-compact configuration with the aim of imaging, with a high brightness sensitivity, any arcmin-scale brightness-temperature anisotropies in the background radio sky. The six well-separated regions were observed at a frequency of 8.7 GHz and the survey regions were limited by the ATCA primary beams which have a full width at half maximum of 6 arcmin at this frequency; all fields were observed with a resolution of 2 arcmin and an rms thermal noise of 24 microJy/beam. After subtracting foreground confusion detected in higher resolution images of the fields, residual fluctuations in Stokes I images are consistent with the expectations from thermal noise and weaker (unidentified) foreground sources; the Stokes Q and U images are consistent with expectations from thermal noise. Within the sensitivity of our observations, we have no reason to believe that there are any Sunyaev-Zeldovich holes in the microwave sky surveyed. Assuming Gaussian-form CMB anisotropy with a `flat' spectrum, we derive 95 per cent confidence upper limits of Q_flat < 10--11 microK in polarized intensity and Q_flat < 25 microK in total intensity. The ATCA filter function peaks at l=4700 and has half maximum values at l=3350 and 6050.Comment: 17 pages, includes 8 figures and 6 tables, accepted for publication in MNRA

    Compact Radio Cores in Seyfert Galaxies

    Full text link
    We have observed a sample of 157 Seyfert galaxies with a 275 km baseline radio interferometer to search for compact, high brightness temperature radio emission from the active nucleus. We obtain the surprising result that compact radio cores are much more common in Seyfert 2 than in Seyfert 1 galaxies, which at first seems to be inconsistent with orientation unification schemes. We propose a model, involving optical depth effects in the narrow-line region, which can reconcile our result with the standard unified scheme. (Accepted for publication in ApJ 1994 Sep 10)Comment: 21 pages and 7 figures, uuencoded tar-compressed postscript files, ATP18

    Deep Chandra Observation of the Pulsar Wind Nebula Powered by the Pulsar J1846-0258 in the Supernova Remnant Kes 75

    Full text link
    We present the results of detailed spatial and spectral analysis of the pulsar wind nebula (PWN) in supernova remnant Kes 75 (G29.7-0.3) using a deep exposure with Chandra X-ray observatory. The PWN shows a complex morphology with clear axisymmetric structure. We identified a one-sided jet and two bright clumps aligned with the overall nebular elongation, and an arc-like feature perpendicular to the jet direction. Further spatial modeling with a torus and jet model indicates a position angle 207\arcdeg\pm8 \arcdeg for the PWN symmetry axis. We interpret the arc as an equatorial torus or wisp and the clumps could be shock interaction between the jets and the surrounding medium. The lack of any observable counter jet implies a flow velocity larger than 0.4c. Comparing to an archival observation 6 years earlier, some small-scale features in the PWN demonstrate strong variability: the flux of the inner jet doubles and the peak of the northern clump broadens and shifts 2" outward. In addition, the pulsar flux increases by 6 times, showing substantial spectral softening from Γ\Gamma=1.1 to 1.9 and an emerging thermal component which was not observed in the first epoch. The changes in the pulsar spectrum are likely related to the magnetar-like bursts of the pulsar that occurred 7 days before the Chandra observation, as recently reported from RXTE observations.Comment: Accepted by ApJ, 8 figures, some of them have been scaled down in resolutio

    Ghost of a Shell: Magnetic Fields of Galactic Supershell GSH 006-15++7

    Get PDF
    We identify a counterpart to a Galactic supershell in diffuse radio polarisation, and use this to determine the magnetic fields associated with this object. GSH 006-15++7 has perturbed the polarised emission at 2.3\,GHz, as observed in the S-band Polarisation All Sky Survey (S-PASS), acting as a Faraday screen. We model the Faraday rotation over the shell, and produce a map of Faraday depth over the area across it. Such models require information about the polarised emission behind the screen, which we obtain from the Wilkinson Microwave Anisotropy Probe (WMAP), scaled from 23\,GHz to 2.3\,GHz, to estimate the synchrotron background behind GSH 006-15++7. Using the modelled Faraday thickness we determine the magnitude and the plane-of-the-sky structure of the line-of-sight magnetic field in the shell. We find a peak line-of-sight field strength of Bpeak=2.0+0.010.7μ|B_\parallel|_\text{peak} = 2.0\substack{+0.01 \\ -0.7}\,\muG. Our measurement probes weak magnetic fields in a low-density regime (number densities of 0.4\sim0.4\,cm3^{-3}) of the ISM, thus providing crucial information about the magnetic fields in the partially-ionised phase.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 19 pages, 19 figure

    The Australia Telescope search for cosmic microwave background anisotropy

    Get PDF
    In an attempt to detect Cosmic Microwave Background (CMB) anisotropy on arcmin scales, we have made an 8.7-GHz image of a sky region with a resolution of 2 arcmin and high surface brightness sensitivity using the Australia Telescope Compact Array (ATCA) in an ultracompact configuration. The foreground discrete-source confusion was estimated from observations with higher resolution at the same frequency and in a scaled array at a lower frequency. Following the subtraction of the foreground confusion, the field shows no features in excess of the instrument noise. This limits the CMB anisotropy flat-band power to Qflat &#60; 23.6 &#956; K with 95% confidence; the ATCA filter function (which is available at the website www.atnf.csiro.au/Research/cmbr/cmbr_atca.html) Fl in multipole l-space peaks at leff = 4700 and has half-maximum values at l = 3350 and 6050

    A radio-polarisation and rotation measure study of the Gum Nebula and its environment

    Get PDF
    The Gum Nebula is 36 degree wide shell-like emission nebula at a distance of only 450 pc. It has been hypothesised to be an old supernova remnant, fossil HII region, wind-blown bubble, or combination of multiple objects. Here we investigate the magneto-ionic properties of the nebula using data from recent surveys: radio-continuum data from the NRAO VLA and S-band Parkes All Sky Surveys, and H-alpha data from the Southern H-Alpha Sky Survey Atlas. We model the upper part of the nebula as a spherical shell of ionised gas expanding into the ambient medium. We perform a maximum-likelihood Markov chain Monte-Carlo fit to the NVSS rotation measure data, using the H-halpha data to constrain average electron density in the shell nen_e. Assuming a latitudinal background gradient in RM we find ne=1.30.4+0.4cm3n_e=1.3^{+0.4}_{-0.4} {\rm cm}^{-3}, angular radius ϕouter=22.70.1+0.1deg\phi_{\rm outer}=22.7^{+0.1}_{-0.1} {\rm deg}, shell thickness dr=18.51.4+1.5pcdr=18.5^{+1.5}_{-1.4} {\rm pc}, ambient magnetic field strength B0=3.92.2+4.9μGB_0=3.9^{+4.9}_{-2.2} \mu{\rm G} and warm gas filling factor f=0.30.1+0.3f=0.3^{+0.3}_{-0.1}. We constrain the local, small-scale (~260 pc) pitch-angle of the ordered Galactic magnetic field to +7+44+7^{\circ}\lesssim\wp\lesssim+44^{\circ}, which represents a significant deviation from the median field orientation on kiloparsec scales (~-7.2^{\circ}). The moderate compression factor X=6.0\,^{+5.1}_{-2.5} at the edge of the H-alpha shell implies that the 'old supernova remnant' origin is unlikely. Our results support a model of the nebula as a HII region around a wind-blown bubble. Analysis of depolarisation in 2.3 GHz S-PASS data is consistent with this hypothesis and our best-fitting values agree well with previous studies of interstellar bubbles.Comment: 33 pages, 16 figures. Accepted by The Astrophysical Journa
    corecore