14,330 research outputs found
A look at profiler performance
Since about 1974, Doppler radars operating in UHF and VHF ranges have been used increasingly to study atmospheric winds. Historically, large systems capable of obtaining data from high altitudes have focused attention on the mesosphere and stratosphere, rather than on the troposphere wherein abides most of the weather considered by most meteorologists. Research address some questions the meteorologist must logically ask first, viz., what is the actual performance capability of these systems, how accurate is the wind data of interest to meteorologists, and from what altitudes in the troposphere are the data reliably obtained
Comment on ``Solidification of a Supercooled Liquid in a Narrow Channel''
Comment on PRL v. 86, p. 5084 (2001) [cond-mat/0101016]. We point out that
the authors' simulations are consistent with the known theory of steady-state
solutions in this system
Nonlinear lattice model of viscoelastic Mode III fracture
We study the effect of general nonlinear force laws in viscoelastic lattice
models of fracture, focusing on the existence and stability of steady-state
Mode III cracks. We show that the hysteretic behavior at small driving is very
sensitive to the smoothness of the force law. At large driving, we find a Hopf
bifurcation to a straight crack whose velocity is periodic in time. The
frequency of the unstable bifurcating mode depends on the smoothness of the
potential, but is very close to an exact period-doubling instability. Slightly
above the onset of the instability, the system settles into a exactly
period-doubled state, presumably connected to the aforementioned bifurcation
structure. We explicitly solve for this new state and map out its
velocity-driving relation
The Universal Gaussian in Soliton Tails
We show that in a large class of equations, solitons formed from generic
initial conditions do not have infinitely long exponential tails, but are
truncated by a region of Gaussian decay. This phenomenon makes it possible to
treat solitons as localized, individual objects. For the case of the KdV
equation, we show how the Gaussian decay emerges in the inverse scattering
formalism.Comment: 4 pages, 2 figures, revtex with eps
The Birth-Death-Mutation process: a new paradigm for fat tailed distributions
Fat tailed statistics and power-laws are ubiquitous in many complex systems.
Usually the appearance of of a few anomalously successful individuals
(bio-species, investors, websites) is interpreted as reflecting some inherent
"quality" (fitness, talent, giftedness) as in Darwin's theory of natural
selection. Here we adopt the opposite, "neutral", outlook, suggesting that the
main factor explaining success is merely luck. The statistics emerging from the
neutral birth-death-mutation (BDM) process is shown to fit marvelously many
empirical distributions. While previous neutral theories have focused on the
power-law tail, our theory economically and accurately explains the entire
distribution. We thus suggest the BDM distribution as a standard neutral model:
effects of fitness and selection are to be identified by substantial deviations
from it
Does the continuum theory of dynamic fracture work?
We investigate the validity of the Linear Elastic Fracture Mechanics approach
to dynamic fracture. We first test the predictions in a lattice simulation,
using a formula of Eshelby for the time-dependent Stress Intensity Factor.
Excellent agreement with the theory is found. We then use the same method to
analyze the experiment of Sharon and Fineberg. The data here is not consistent
with the theoretical expectation.Comment: 4 page
Quantum network of neutral atom clocks
We propose a protocol for creating a fully entangled GHZ-type state of
neutral atoms in spatially separated optical atomic clocks. In our scheme,
local operations make use of the strong dipole-dipole interaction between
Rydberg excitations, which give rise to fast and reliable quantum operations
involving all atoms in the ensemble. The necessary entanglement between distant
ensembles is mediated by single-photon quantum channels and collectively
enhanced light-matter couplings. These techniques can be used to create the
recently proposed quantum clock network based on neutral atom optical clocks.
We specifically analyze a possible realization of this scheme using neutral Yb
ensembles.Comment: 13 pages, 11 figure
Optical Superradiance from Nuclear Spin Environment of Single Photon Emitters
We show that superradiant optical emission can be observed from the polarized
nuclear spin ensemble surrounding a single photon emitter such as a single
quantum dot (QD) or Nitrogen-Vacancy (NV) center. The superradiant light is
emitted under optical pumping conditions and would be observable with realistic
experimental parameters.Comment: 4+ pages, 3 figures, considerably rewritten, conclusions unchanged,
accepted versio
Generalized Schrieffer-Wolff Formalism for Dissipative Systems
We present a formalized perturbation theory for Markovian open systems in the
language of a generalized Schrieffer-Wolff (SW) transformation. A non-unitary
rotation decouples the unper- turbed steady states from all fast degrees of
freedom, in order to obtain an effective Liouvillian, that reproduces the exact
low excitation spectrum of the system. The transformation is derived in a
constructive way, yielding a perturbative expansion of the effective Liouville
operator. The presented formalism realizes an adiabatic elimination of fast
degrees of freedom to arbitrary orders in the perturbation. We exemplarily
employ the SW formalism to two generic open systems and discuss general
properties of the different orders of the perturbation.Comment: 11 pages, 1 figur
- …