21 research outputs found
Correlations between milk and plasma levels of amino and carboxylic acids in dairy cows.
The objective of this study was to investigate the relationship between the concentrations of 19 amino acids, glucose, and seven carboxylic acids in the blood and milk of dairy cows and their correlations with established markers of ketosis. To that end, blood plasma and milk specimens were collected throughout lactation in two breeds of dairy cows of different milk yield. Plasma concentrations of glucose, pyruvate, lactate, α-aminobutyrate, β-hydroxybutyrate (BHBA), and most amino acids, except for glutamate and aspartate, were on average 9.9-fold higher than their respective milk levels. In contrast, glutamate, aspartate, and the Krebs cycle intermediates succinate, fumarate, malate, and citrate were on average 9.1-fold higher in milk than in plasma. For most metabolites, with the exception of BHBA and threonine, no significant correlations were observed between their levels in plasma and milk. Additionally, milk levels of acetone showed significant direct relationships with the glycine-to-alanine ratio and the BHBA concentration in plasma. The marked decline in plasma concentrations of glucose, pyruvate, lactate, and alanine in cows with plasma BHBA levels above the diagnostic cutoff point for subclinical ketosis suggests that these animals fail to meet their glucose demand and, as a consequence, rely increasingly on ketone bodies as a source of energy. The concomitant increase in plasma glycine may reflect not only the excessive depletion of protein reserves but also a potential deficiency of vitamin B6
Discrimination of COVID‐19 From Inflammation‐Induced Cytokine Storm Syndromes Using Disease‐Related Blood Biomarkers
International audienc
Neoadjuvant image-guided helical intensity modulated radiotherapy of extremity sarcomas – a single center experience
Abstract Background Advanced radiotherapy (RT) techniques allow normal tissue to be spared in patients with extremity soft tissue sarcoma (STS). This work aims to evaluate toxicity and outcome after neoadjuvant image-guided radiotherapy (IGRT) as helical intensity modulated radiotherapy (IMRT) with reduced margins based on MRI-based target definition in patients with STS. Methods Between 2010 to 2014, 41 patients with extremity STS were treated with IGRT delivered as helical IMRT on a tomotherapy machine. The tumor site was in the upper extremity in 6 patients (15%) and lower extremity in 35 patients (85%). Reduced margins of 2.5 cm in longitudinal direction and 1.0 cm in axial direction were used to expand the MRI-defined gross tumor volume, including peritumoral edema, to the clinical target volume. An additional margin of 5 mm was added to receive the planning target volume. The full total dose of 50 Gy in 2 Gy fractions was sucessfully applied in 40 patients. Two patients received chemotherapy instead of surgery due to systemic progression. All patients were included into a strict follow-up program and were seen interdisciplinarily by the Departments of Orthopaedic Surgery and Radiation Oncology. Results Thirty eight patients that received total RT total dose and subsequent resection were analyzed for outcome. After a median follow-up of 38.5 months cumulative OS, local PFS and systemic PFS at 2 years were determined at 78.2, 85.2 and 54.5%, respectively. Two of 6 local recurrences were proximal marginal misses. Negative resection margins were achieved in 84% of patients. The rate of major wound complications was comparable to previous IMRT studies with 36.8%. RT was overall tolerable with low toxicity rates. Conclusions IMRT-IGRT offers neoadjuvant treatment for extremity STS with reduced safety margins and thus low toxicity rates. Wound complication rates were comparable to previously reported frequencies. Two reported marginal misses suggest a word of caution for reduction of longitudinal safety margins
Hybrid Immunity Protects against Antibody Fading after SARS-CoV-2mRNA Vaccination in Kidney Transplant Recipients, Dialysis Patients, and Medical Personnel: 9 Months Data from the Prospective, Observational Dia-Vacc Study
(1) Background: Compared to medical personnel, SARS-CoV-2mRNA vaccination-related positive immunity rates, levels, and preservation over time in dialysis and kidney transplant patients are reduced. We hypothesized that COVID-19 pre-exposure influences both vaccination-dependent immunity development and preservation in a group-dependent manner. (2) Methods: We evaluated 2- and 9-month follow-up data in our observational Dia-Vacc study, exploring specific cellular (interferon-γ release assay = IGRA) and/or humoral immune responses (IgA/IgG/RBD antibodies) after two SARS-CoV-2mRNA vaccinations in 2630 participants, including medical personnel (301-MP), dialysis patients (1841-DP), and kidney transplant recipients (488-KTR). Study participants were also separated into COVID-19 pre-exposure (hybrid immunity) positive (n = 407) versus negative (n = 2223) groups. (3) Results: COVID-19 pre-exposure improved most vaccination-related positive immunity rates in KTR and DP at 2 months but not in MP, where rates reached almost 100% independent of hybrid immunity. In the COVID-19-negative study, patients’ immunity faded between two and nine months, evaluated via the percentage of patients with an RBD antibody decrease >50%, and was markedly group- (MP-17.8%, DP-52.2%, and KTR-38.6%) and vaccine type-dependent. In contrast, in all patient groups with COVID-19, pre-exposure RBD antibody decreases of >50% were similarly rare (MP-4.3%, DP-7.2%, and KTR-0%) but still vaccine type-dependent, with numerically reduced numbers in mRNA-1273- versus BNT162b2mRNA-treated patients. Multivariable regression analysis of RBD antibody changes between two and nine months by interval scale categorization confirmed COVID-19 pre-exposure as a factor in inhibiting strong RBD Ab fading. COVID-19 pre-exposure in MP and DP also numerically reduced T-cell immunity fading. In DP, symptomatic (versus asymptomatic) COVID-19 pre-exposure was identified as a factor in reducing strong RBD Ab fading after vaccination. (4) Conclusions: After mRNA vaccination, immunity positivity rates in DP and KTR but not MP, as well as immunity preservation in MP/DP/KTR, are markedly improved via prior COVID-19 infection. In DP, prior symptomatic compared to asymptomatic COVID-19 disease was particularly effective in blocking immunity fading after mRNA vaccination
Recommended from our members
Germline deletions in the tumour suppressor gene FOCAD are associated with polyposis and colorectal cancer development.
Heritable genetic variants can significantly affect the lifetime risk of developing cancer, including polyposis and colorectal cancer (CRC). Variants in genes currently known to be associated with a high risk for polyposis or CRC, however, explain only a limited number of hereditary cases. The identification of additional genetic causes is, therefore, crucial to improve CRC prevention, detection and treatment. We have performed genome-wide and targeted DNA copy number profiling and resequencing in early-onset and familial polyposis/CRC patients, and show that deletions affecting the open reading frame of the tumour suppressor gene FOCAD are recurrent and significantly enriched in CRC patients compared with unaffected controls. All patients carrying FOCAD deletions exhibited a personal or family history of polyposis. RNA in situ hybridization revealed FOCAD expression in epithelial cells in the colonic crypt, the site of tumour initiation, as well as in colonic tumours and organoids. Our data suggest that monoallelic germline deletions in the tumour suppressor gene FOCAD underlie moderate genetic predisposition to the development of polyposis and CRC
Germline deletions in the tumour suppressor gene FOCAD are associated with polyposis and colorectal cancer development
Heritable genetic variants can significantly affect the lifetime risk of developing cancer, including polyposis and colorectal cancer (CRC). Variants in genes currently known to be associated with a high risk for polyposis or CRC, however, explain only a limited number of hereditary cases. The identification of additional genetic causes is, therefore, crucial to improve CRC prevention, detection and treatment. We have performed genome-wide and targeted DNA copy number profiling and resequencing in early-onset and familial polyposis/CRC patients, and show that deletions affecting the open reading frame of the tumour suppressor gene FOCAD are recurrent and significantly enriched in CRC patients compared with unaffected controls. All patients carrying FOCAD deletions exhibited a personal or family history of polyposis. RNA in situ hybridization revealed FOCAD expression in epithelial cells in the colonic crypt, the site of tumour initiation, as well as in colonic tumours and organoids. Our data suggest that monoallelic germline deletions in the tumour suppressor gene FOCAD underlie moderate genetic predisposition to the development of polyposis and CRC