811 research outputs found
DESIGNING A COMPETITIVE ADVANTAGE MODEL WITH TECHNOLOGY ORIENTED APPROACH USING FAHP TECHNIQUE: A CASE STUDY IN COIL INDUSTRY
One of the distinctive attributes of today’s successful companies is having at least one competitive advantage in one known area. Technological competency is an important advantage which helps improve the firm’s competitiveness. In fact, suitable use of new technologies can dramatically influence the innovation speed, decrease the time of product development cycle and also increase the rate of new product introduction. Firm-specific technological competencies help explain why a firm is different, how it changes over time, and whether it is capable of remaining competitive. In this study, technological competency factors (technology management, process technology, product technology) are prioritized according to the competitive advantage levels(customer satisfaction, brand reputation, new product introduction, market share) and competitive priorities (cost, price, quality, flexibility, time) using fuzzy Analytic hierarchy process (FAHP) with the aim of maximizing the nonfinancial performance at coil manufacture industry. The results indicate that within Iran coil industry, process technology is of greater importance than technology management and product technology
Genomic and molecular characterization of a novel quorum sensing molecule in Bacillus licheniformis
Quorum sensing molecules (QSMs) are involved in the regulation of complicated processes helping bacterial populations respond to changes in their cell-density. Although the QS gene cluster (comQXPA) has been identified in the genome sequence of some bacilli, the QS system B. licheniformis has not been investigated in detail, and its QSM (ComX pheromone) has not been identified. Given the importance of this antagonistic bacterium as an industrial workhorse, this study was aimed to elucidate B. licheniformis NCIMB-8874 QS. The results obtained from bioinformatics studies on the whole genome sequence of this strain confirmed the presence of essential quorum sensing-related genes. Although polymorphism was verified in three proteins of this cluster, ComQ, precursor-ComX and ComP, the transcription factor ComA was confirmed as the most conserved protein. The cell–cell communication of B. licheniformis NCIMB-8874 was investigated through further elucidation of the ComX pheromone as 13-amino acid peptide. The peptide sequence of the pheromone has been described through biochemical characterisation
Explanation the experiences of mothers with gestational diabetes about the factors affecting self-care: A qualitative study
Background and aims: Diabetes is the most common medical complication of pregnancy. This disease is a growing health problem in the world. Self-care is the most important factor in the control of chronic diseases such as diabetes. Several factors include biological factors, psychological, economic, social, cultural and health care system. Community Treatment is effective directly and indirectly on self-care behaviors in patients with diabetes.The aim of this study was to assess mothers, experiences with gestational diabetes on the factors influencing self-care.
Methods: This study is a qualitative conventional content analysis research. In this study, data were collected by semi-structured individual interviews. Interviews were performed based on interview guidance. Participants were pregnant women diagnosed with gestational diabetes in 24th-36th week of pregnancy who referred to the clinics affiliated to Shahid Beheshti University of Medical Sciences. After 12 interviews with participants, data were saturated. Conventional content analysis was done for data analysis. To assess the accuracy and reliability of data, four criteria provided by Lincoln and Guba, including dependability, credibility, confirmability and transferability were used. For the analysis of qualitative data in this study, the conventional qualitative content analysis methods and software MAXQDA 10 was used.
Results: Perception of pregnant women led to the extraction of two themes: barriers and facilitators to self-care. The former was featured with four main categories: insolvency, perceived problems, admission disease and support from others. 13 sub- categories were also classified in the main form. Results showed that mothers for self- care actions, need to get further information via health-care provider and get more support from their relatives. It was also found barriers and facilitators to take care of mothers in most societies is almost the same.
Conclusion: According to the results of this study, it is needed to do appropriate proceedings to promoting culture, providing appropriate information and higher quality services, and promoting healthlevel and self-care of mothers with gestational diabetes
A cell engineering strategy to enhance supercoiled plasmid DNA production for gene therapy
With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS) would increase DNA gyrase-mediated plasmid supercoiling. SGS from 3 different replicons, (the Mu bacteriophage and two plasmids, pSC101 and pBR322) were inserted into the plasmid, pUC57. Different sizes of these variants were transformed into E. coli DH5α, and their supercoiling properties and segregational stability measured. A 36% increase in supercoiling density was found in pUC57-SGS, but only when SGS was derived from the Mu phage and was the larger sized version of this fragment. These results were also confirmed at fermentation scale. Total % supercoiled monomer was maintained to 85-90%. A two-fold increase in plasmid yield was also observed for pUC57-SGS in comparison to pUC57. pUC57-SGS displayed greater segregational stability than pUC57-cer and pUC57, demonstrating a further potential advantage of the SGS site. These findings should augment the potential of plasmid DNA vectors in plasmid DNA manufacture. This article is protected by copyright. All rights reserved
Improving Fab’ fragment retention in an autonucleolytic Escherichia coli strain by swapping periplasmic nuclease translocation signal from OmpA to DsbA
OBJECTIVES:
To reduce unwanted Fab’ leakage from an autonucleolytic Escherichia coli strain, which co-expresses OmpA-signalled Staphylococcal nuclease and Fab’ fragment in the periplasm, by substituting in Serratial nuclease and the DsbA periplasm translocation signal as alternatives.
RESULTS:
We attempted to genetically fuse a nuclease from Serratia marcescens to the OmpA signal peptide but plasmid construction failed, possibly due to toxicity of the resultant nuclease. Combining Serratial nuclease to the DsbA signal peptide was successful. The strain co-expressing this nuclease and periplasmic Fab’ grew in complex media and exhibited nuclease activity detectable by DNAse agar plate but its growth in defined medium was retarded. Fab’ coexpression with Staphylococcal nuclease fused to the DsbA signal peptide resulted in cells exhibiting nuclease activity and growth in defined medium. In cultivation to high cell density in a 5 l bioreactor, DsbA-fused Staphylococcal nuclease co-expression coincided with reduced Fab’ leakage relative to the original autonucleolytic Fab’ strain with OmpA-fused staphylococcal nuclease.
CONCLUSIONS:
We successfully rescued Fab’ leakage back to acceptable levels and established a basis for future investigation of the linkage between periplasmic nuclease expression and leakage of co-expressed periplasmic Fab’ fragment to the surrounding growth media
P(3HB) Based Magnetic Nanocomposites: Smart Materials for Bone Tissue Engineering
The objective of this work was to investigate the potential application of Poly(3-hydroxybutyrate)/magnetic nanoparticles, P(3HB)/MNP, and Poly(3-hydroxybutyrate)/ferrofluid (P(3HB)/FF) nanocomposites as a smart material for bone tissue repair. The composite films, produced using conventional solvent casting technique, exhibited a good uniform dispersion of magnetic nanoparticles and ferrofluid and their aggregates within the P(3HB) matrix. The result of the static test performed on the samples showed that there was a 277% and 327% increase in Young's modulus of the composite due to the incorporation of MNP and ferrofluid, respectively. The storage modulus of the P(3HB)MNP and P(3HB)/FF was found to have increased to 186% and 103%, respectively, when compared to neat P(3HB). The introduction of MNP and ferrofluid positively increased the crystallinity of the composite scaffolds which has been suggested to be useful in bone regeneration. The total amount of protein absorbed by the P(3HB)/MNP and P(3HB)/FF composite scaffolds also increased by 91% and 83%, respectively, with respect to neat P(3HB). Cell attachment and proliferation were found to be optimal on the P(HB)/MNP and P(3HB)/FF composites compared to the tissue culture plate (TCP) and neat P(3HB), indicating a highly compatible surface for the adhesion and proliferation of the MG-63 cells. Overall, this work confirmed the potential of using P(3HB)/MNP and P(3HB)/FF composite scaffolds in bone tissue engineering
Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3-hydroxybutyrate) and micro-fibrillated bacterial cellulose
Cartilage tissue engineering is an emerging therapeutic strategy that aims to regenerate damaged cartilage caused by disease, trauma, ageing or developmental disorder. Since cartilage lacks regenerative capabilities, it is essential to develop approaches that deliver the appropriate cells, biomaterials and signalling factors to the defect site. Materials and fabrication technologies are therefore critically important for cartilage tissue engineering in designing temporary, artificial extracellular matrices (scaffolds), which support 3D cartilage formation. Hence, this work aimed to investigate the use of poly(3-hydroxybutyrate)/microfibrillated bacterial cellulose (P(3HB)/MFC) composites as 3D-scaffolds for potential application in cartilage tissue engineering. The compression moulding/particulate leaching technique employed in the study resulted in good dispersion and a strong adhesion between the MFC and the P(3HB) matrix. Furthermore, the composite scaffold produced displayed better mechanical properties than the neat P(3HB) scaffold. On addition of 10, 20, 30 and 40 wt% MFC to the P(3HB) matrix, the compressive modulus was found to have increased by 35%, 37%, 64% and 124%, while the compression yield strength increased by 95%, 97%, 98% and 102% respectively with respect to neat P(3HB). Both cell attachment and proliferation were found to be optimal on the polymer-based 3D composite scaffolds produced, indicating a non-toxic and highly compatible surface for the adhesion and proliferation of mouse chondrogenic ATDC5 cells. The large pores sizes (60 - 83 µm) in the 3D scaffold allowed infiltration and migration of ATDC5 cells deep into the porous network of the scaffold material. Overall this work confirmed the potential of P(3HB)/MFC composites as novel materials in cartilage tissue engineering
Share of nations in 37 international public health journals : an equity and diversity perspective towards health research capacity building.
Background: This paper contributes to further exploration of inequity in access to health research capacity development by examining the representation of different nations in international public health journals. It also aims to examine the degree of diversity that exists in these journals.Methods: This study is a descriptive survey. It was done with objective sampling on 37 ISI health journals on October of 2008.The number and nationality of people in different editorial positions of the journals was identified. The second analysis involved recalculating the numbers obtained for each nation to the population size of nations per million inhabitants. In order to better compare countries in terms of presence in editorial team of the journals, a ‘public health editor equity gap ratio' (PHEEGR) was developed.Results: Low income countries have occupied none of the leadership positions of chief editor or associate /assistant chief editors and middle income countries at maximum shared less than 5 percent. The PHEEGR gap in access to the different editorial positions between highest to the lowest representation of countries was 16/1 for chief editors, 12/1 for associate editors , 335/1 for editorial boards and 202/1 for associate editorial boards. However, after normalizing the data to the country's population, the gap increased significantly.Conclusion: There is an imbalance and possibly even inequity in the composition of editorial boards and offices of international health journals that should be paid significant attention. This can contribute to fill the equity gap exists between health in developing and developed countries
High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization
High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed-batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled-up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale-up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 2017
Recommended from our members
Total Sitting Time and Sitting Pattern in Postmenopausal Women Differ by Hispanic Ethnicity and are Associated With Cardiometabolic Risk Biomarkers.
Background Sedentary behavior is pervasive, especially in older adults, and is associated with cardiometabolic disease and mortality. Relationships between cardiometabolic biomarkers and sitting time are unexplored in older women, as are possible ethnic differences. Methods and Results Ethnic differences in sitting behavior and associations with cardiometabolic risk were explored in overweight/obese postmenopausal women (n=518; mean±SD age 63±6 years; mean body mass index 31.4±4.8 kg/m2). Accelerometer data were processed using validated machine-learned algorithms to measure total daily sitting time and mean sitting bout duration (an indicator of sitting behavior pattern). Multivariable linear regression was used to compare sitting among Hispanic women (n=102) and non-Hispanic women (n=416) and tested associations with cardiometabolic risk biomarkers. Hispanic women sat, on average, 50.3 minutes less/day than non-Hispanic women (P<0.001) and had shorter (3.6 minutes less, P=0.02) mean sitting bout duration. Among all women, longer total sitting time was deleteriously associated with fasting insulin and triglyceride concentrations, insulin resistance, body mass index and waist circumference; longer mean sitting bout duration was deleteriously associated with fasting glucose and insulin concentrations, insulin resistance, body mass index and waist circumference. Exploratory interaction analysis showed that the association between mean sitting bout duration and fasting glucose concentration was significantly stronger among Hispanic women than non-Hispanic women (P-interaction=0.03). Conclusions Ethnic differences in 2 objectively measured parameters of sitting behavior, as well as detrimental associations between parameters and cardiometabolic biomarkers were observed in overweight/obese older women. The detrimental association between mean sitting bout duration and fasting glucose may be greater in Hispanic women than in non-Hispanic women. Corroboration in larger studies is warranted
- …
