12 research outputs found

    Release of Nitrogen and Phosphorus from Poultry Litter Amended with Acidified Biochar

    Get PDF
    Application of poultry litter (PL) to soil may lead to nitrogen (N) losses through ammonia (NH3) volatilization and to potential contamination of surface runoff with PL-derived phosphorus (P). Amending litter with acidified biochar may minimize these problems by decreasing litter pH and by retaining litter-derived P, respectively. This study evaluated the effect of acidified biochars from pine chips (PC) and peanut hulls (PH) on NH3 losses and inorganic N and P released from surface-applied or incorporated PL. Poultry litter with or without acidified biochars was surface-applied or incorporated into the soil and incubated for 21 d. Volatilized NH3 was determined by trapping it in acid. Inorganic N and P were determined by leaching the soil with 0.01 M of CaCl2 during the study and by extracting it with 1 M KCl after incubation. Acidified biochars reduced NH3 losses by 58 to 63% with surface-applied PL, and by 56 to 60% with incorporated PL. Except for PH biochar, which caused a small increase in leached NH4 +-N with incorporated PL, acidified biochars had no effect on leached or KCl-extractable inorganic N and P from surface-applied or incorporated PL. These results suggest that acidified biochars may decrease NH3 losses from PL but may not reduce the potential for P loss in surface runoff from soils receiving PL

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366

    No full text
    Summary The influence of charcoal and smoke condensates (pyroligneous acid, PA) on microbial activity in a highly weathered Amazonian upland soil was assessed via measurements of basal respiration (BR), substrate-induced respiration (SIR), and exponential population increase after substrate addition. PA extracts are commonly used for fertilizer or as pest control in Brazil, where phosphorus (P) availability and nitrogen (N) leaching are among the most severe limitations for agriculture. Microbes play an important role in nutrient cycling and solubilizing of phosphate. BR, microbial biomass, population growth and the microbe's efficiency (expressed by the metabolic quotient) increased linearly and significantly with increasing charcoal concentrations (50, 100 and 150 g kg À1 soil). Application of PA caused a sharp increase in all parameters. We suppose that the condensates from smoke contain easily degradable substances and only small amounts of inhibitory agents, which could be utilized by the microbes for their metabolism

    Struvite Precipitation as a Means of Recovering Nutrients and Mitigating Ammonia Toxicity in a Two-Stage Anaerobic Digester Treating Protein-Rich Feedstocks

    No full text
    Accumulation of ammonia, measured as total ammonia nitrogen (TAN), a product of protein decomposition in slaughterhouse wastes, inhibits the anaerobic digestion process, reducing digester productivity and leading to failure. Struvite precipitation (SP) is an effective means to remove TAN and enhance the buffering of substrates. Different Mg and P sources were evaluated as reactants in SP in acidogenic digester effluents to reduce its TAN levels. In order to measure impact of TAN removal, a standard biochemical methane potential (BMP) test was conducted to measure methane yield from treatments that had the highest TAN reductions. SP results showed 6 of 9 reagent combinations resulted in greater than 70% TAN removal. The BMP results indicated that SP treatment by adding Mg(OH)2 and H3PO4 resulted in 57.6% nitrogen recovery and 41.7% increase in methane yield relative to the substrate without SP. SP is an effective technology to improve nutrient recovery and methane production from the anaerobic digestion of protein-rich feedstocks

    Pine Chip and Poultry Litter Derived Biochars Affect C and N Dynamics in Two Georgia, USA, Ultisols

    No full text
    Some biochars produced by pyrolysis of biomass have the potential to sequester C and enhance nutrient supplies in agricultural soils. A 28-day lab incubation was used to assess the potential effects of biochars derived from pine chips (PC) or poultry litter (PL) applied at five application rates (0, 22.5, 45.0, 67.5, and 90 Mg ha−1 equivalent). Biochars were applied to two acidic Ultisols, a Cecil sandy loam and a Tifton loamy sand, found in Georgia, USA. Cumulative basal soil respiration was measured over the 28-day incubation. Other soil properties measured before and after incubation were soil pH, total soil organic carbon (SOC), total soil N, soluble organic C (OC), soil mineral nitrogen (NH4+-N and NO3−-N), and microbial biomass C (MBC). Before incubation, addition of both PC and PL biochars increased soil pH, total SOC, and C:N ratio in both soils. Addition of the PL biochar increased total soil N, soluble OC, and NO3−-N in both soils, MBC in Tifton soil, and NH4+-N in Cecil soil. Addition of the PC biochar decreased NO3−-N in Cecil soil but increased it in Tifton soil. After the 28-day incubation, averaged across soils, pH increased in the 22.5 Mg ha−1 PC and 22.5 and 67.5 Mg ha−1 PL treatments, total SOC declined in the 45 and 67.5 Mg ha−1 PC treatments, and the C:N increased in soil controls and decreased in the 67.5 Mg ha−1 PC treatment. In Cecil soil, the MBC declined in PL treatments except at 90 Mg ha−1, and NH4+-N declined in the 90 Mg ha−1 PC treatments. In Tifton soil, MBC increased in the 45 Mg ha−1 PL treatment, and NH4+-N increased in all but the 22.5 Mg ha−1 PL treatments. Total N and NO3−-N did not change with incubation. Basal respiration was not affected by biochar, thought it was generally greater in Cecil than Tifton soil. Net SOC loss and the initial increase in soluble OC and MBC indicated potential C priming from adding both biochars. Increased NH4+-N with time in Tifton PL treatments indicated potential N priming. In Cecil soil, the PC biochar may have immobilized NH4+-N, but PL biochar likely supplied it. In Tifton soil, PC biochar appeared to be generally inert, but PL biochar supplied soluble OC and NH4+-N, although it might have inhibited nitrification

    Increasing failure of miltefosine in the treatment of kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance

    No full text
    Miltefosine (MIL), the only oral drug for visceral leishmaniasis (VL), is currently the first-line therapy in the VL elimination program of the Indian subcontinent. Given the paucity of anti-VL drugs and the looming threat of resistance, there is an obvious need for close monitoring of clinical efficacy of MIL. In a cohort study of 120 VL patients treated with MIL in Nepal, we monitored the clinical outcomes up to 12 months after completion of therapy and explored the potential role of drug compliance, parasite drug resistance, and reinfection. The initial cure rate was 95.8% (95% confidence interval [CI], 92.2-99.4) and the relapse rate at 6 and 12 months was 10.8% (95% CI, 5.2-16.4) and 20.0% (95% CI, 12.8-27.2) , respectively. No significant clinical risk factors of relapse apart from age <12 years were found. Parasite fingerprints of pretreatment and relapse bone marrow isolates within 8 patients were similar, suggesting that clinical relapses were not due to reinfection with a new strain. The mean promastigote MIL susceptibility (50% inhibitory concentration) of isolates from definite cures was similar to that of relapses. Although more tolerant strains were observed, parasite resistance, as currently measured, is thus not likely involved in MIL treatment failure. Moreover, MIL blood levels at the end of treatment were similar in cured and relapsed patients. Conclusions: Relapse in one-fifth of the MIL-treated patients observed in our study is an alarming signal for the VL elimination campaign, urging for further review and cohort monitorin

    Kidney transplantation in patients with Fabry disease

    No full text
    corecore