27 research outputs found

    Measurement of Fecal Testosterone Metabolites in Mice: Replacement of Invasive Techniques

    Get PDF
    Testosterone is the main reproductive hormone in male vertebrates and conventional methods to measure testosterone rely on invasive blood sampling procedures. Here, we aimed to establish a non-invasive alternative by assessing testosterone metabolites (TMs) in fecal and urinary samples in mice. We performed a radiometabolism study to determine the effects of daytime and sex on the metabolism and excretion pattern of radiolabeled TMs. We performed physiological and biological validations of the applied EIA to measure TMs and assessed diurnal fluctuations in TM excretions in male and female mice and across strains. We found that males excreted significantly more radiolabeled TMs via the feces (59%) compared to females (49.5%). TM excretion patterns differed significantly between urinary and fecal samples and were affected by the daytime of ³H-testosterone injection. Overall, TM excretion occurred faster in urinary than fecal samples. Peak excretion of fecal TMs occurred after 8 h when animals received the 3H-testosterone in the morning, or after 4 h when they received the 3H-testosterone injection in the evening. Daytime had no effect on the formed TMs; however, males and females formed different types of TMs. As expected, males showed higher fecal TM levels than females. Males also showed diurnal fluctuations in their TM levels but we found no differences in the TM levels of C57BL/6J and B6D2F1 hybrid males. Finally, we successfully validated our applied EIA (measuring 17β-hydroxyandrostane) by showing that hCG (human chorionic gonadotropin) administration increased TM levels, whereas castration reduced them. In conclusion, our EIA proved suitable for measuring fecal TMs in mice. Our non-invasive method to assess fecal TMs can be widely used in various research disciplines like animal behavior, reproduction, animal welfare, ecology, conservation, and biomedicine

    The impact of percutaneous epididymal sperm aspiration on sperm quality in mice

    Get PDF
    In laboratory mice, sperm quality is usually assessed in spermatozoa collected from the cauda epididymidis of freshly sacrificed males. Percutaneous epididymal sperm aspiration (PESA) is a non-terminal alternative that would allow repeated sperm collection for sperm quality assessment in living males. To test whether PESA is a suitable method to assess sperm quality, we compared sperm traits between samples collected by PESA vs the commonly applied terminal cauda epididymidis dissection. The collected sperm samples were analyzed using computer-assisted sperm analysis and various parameters, including sperm motility, swimming velocity and morphology, were determined. We were able to retrieve motile sperm from all mice using PESA and the terminal cauda epididymidis dissection. Based on computer-assisted sperm analysis, however, sperm motility and swimming velocity were significantly lower after PESA compared to samples obtained by cauda epididymidis dissection. In addition, we found significantly more morphological abnormalities in PESA samples, probably induced as a side effect of the sampling technique. Although sperm samples collected by PESA are successfully used for in vitro fertilization, we cannot recommend PESA as a suitable method to assess sperm quality in mice, since the procedure seems to impair various sperm traits

    Eleven strategies for making reproducible research and open science training the norm at research institutions

    Get PDF
    Across disciplines, researchers increasingly recognize that open science and reproducible research practices may accelerate scientific progress by allowing others to reuse research outputs and by promoting rigorous research that is more likely to yield trustworthy results. While initiatives, training programs, and funder policies encourage researchers to adopt reproducible research and open science practices, these practices are uncommon inmanyfields. Researchers need training to integrate these practicesinto their daily work. We organized a virtual brainstorming event, in collaboration with the German Reproducibility Network, to discuss strategies for making reproducible research and open science training the norm at research institutions. Here, weoutline eleven strategies, concentrated in three areas:(1)offering training, (2)adapting research assessment criteria and program requirements, and (3) building communities. We provide a brief overview of each strategy, offer tips for implementation,and provide links to resources. Our goal is toencourage members of the research community to think creatively about the many ways they can contribute and collaborate to build communities,and make reproducible research and open sciencetraining the norm. Researchers may act in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees. Institutionalleadership and research administration andsupport staff can accelerate progress by implementing change across their institution

    Eleven strategies for making reproducible research and open science training the norm at research institutions

    Get PDF
    Across disciplines, researchers increasingly recognize that open science and reproducible research practices may accelerate scientific progress by allowing others to reuse research outputs and by promoting rigorous research that is more likely to yield trustworthy results. While initiatives, training programs, and funder policies encourage researchers to adopt reproducible research and open science practices, these practices are uncommon inmanyfields. Researchers need training to integrate these practicesinto their daily work. We organized a virtual brainstorming event, in collaboration with the German Reproducibility Network, to discuss strategies for making reproducible research and open science training the norm at research institutions. Here, weoutline eleven strategies, concentrated in three areas:(1)offering training, (2)adapting research assessment criteria and program requirements, and (3) building communities. We provide a brief overview of each strategy, offer tips for implementation,and provide links to resources. Our goal is toencourage members of the research community to think creatively about the many ways they can contribute and collaborate to build communities,and make reproducible research and open sciencetraining the norm. Researchers may act in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees. Institutionalleadership and research administration andsupport staff can accelerate progress by implementing change across their institution

    Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist)

    Get PDF
    Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.</p

    Measurement of Fecal Testosterone Metabolites in Mice: Replacement of Invasive Techniques

    No full text
    Testosterone is the main reproductive hormone in male vertebrates and conventional methods to measure testosterone rely on invasive blood sampling procedures. Here, we aimed to establish a non-invasive alternative by assessing testosterone metabolites (TMs) in fecal and urinary samples in mice. We performed a radiometabolism study to determine the effects of daytime and sex on the metabolism and excretion pattern of radiolabeled TMs. We performed physiological and biological validations of the applied EIA to measure TMs and assessed diurnal fluctuations in TM excretions in male and female mice and across strains. We found that males excreted significantly more radiolabeled TMs via the feces (59%) compared to females (49.5%). TM excretion patterns differed significantly between urinary and fecal samples and were affected by the daytime of &sup3;H-testosterone injection. Overall, TM excretion occurred faster in urinary than fecal samples. Peak excretion of fecal TMs occurred after 8 h when animals received the 3H-testosterone in the morning, or after 4 h when they received the 3H-testosterone injection in the evening. Daytime had no effect on the formed TMs; however, males and females formed different types of TMs. As expected, males showed higher fecal TM levels than females. Males also showed diurnal fluctuations in their TM levels but we found no differences in the TM levels of C57BL/6J and B6D2F1 hybrid males. Finally, we successfully validated our applied EIA (measuring 17&beta;-hydroxyandrostane) by showing that hCG (human chorionic gonadotropin) administration increased TM levels, whereas castration reduced them. In conclusion, our EIA proved suitable for measuring fecal TMs in mice. Our non-invasive method to assess fecal TMs can be widely used in various research disciplines like animal behavior, reproduction, animal welfare, ecology, conservation, and biomedicine

    Effect of Different Ambient Temperatures on Reproductive Outcome and Stress Level of Lactating Females in Two Mouse Strains

    No full text
    Ambient temperature is an important non-biotic environmental factor influencing immunological and oncological parameters in laboratory mice. It is under discussion which temperature is more appropriate and whether the commonly used room temperature in rodent facilities of about 21 &deg;C represents a chronic cold stress or the 30 &deg;C of the thermoneutral zone constitutes heat stress for the animals. In this study, we selected the physiological challenging period of lactation to investigate the influence of a cage temperature of 20 &deg;C, 25 &deg;C, and 30 &deg;C, respectively, on reproductive performance and stress hormone levels in two frequently used mouse strains. We found that B6D2F1 hybrid mothers weaned more pups compared to C57BL/6N mothers, and that the number of weaned pups was reduced when mothers of both strains were kept at 30 &deg;C. Furthermore, at 30 &deg;C, mothers and pups showed reduced body weight at weaning and offspring had longer tails. Despite pronounced temperature effects on reproductive parameters, we did not find any temperature effects on adrenocortical activity in breeding and control mice. Independent of the ambient temperature, however, we found that females raising pups showed elevated levels of faecal corticosterone metabolites (FCMs) compared to controls. Peak levels of stress hormone metabolites were measured around birth and during the third week of lactation. Our results provide no evidence of an advantage for keeping lactating mice in ambient temperatures near the thermoneutral zone. In contrast, we found that a 30 &deg;C cage temperature during lactation reduced body mass in females and their offspring and declined female reproductive performance
    corecore