175 research outputs found
In vitro and in vivo evaluation of [I-123]-VEGF(165) as a potential tumor marker
peer reviewedOne of the research challenges in oncology is to develop new biochemical methods for noninvasive tumor therapy evaluation to determine,whether the chemotherapeutics is effective. Vascular endothelial growth factor (VEGF) was labeled with radioiodine and evaluated in vitro as well as in vivo, using A2058, a melanoma cell line overexpressing VEGFR-1 and -2. Saturation binding analysis with [I-125]-VEGF resulted in a K-d of 0.1 nM. Internalization assays indicate the preserved ligand induced internalization and metabolization of the tracer. Biodistribution studies with [I-123]-VEGF in wild type and A2058 tumor-bearing athymic mice showed low background activity and a tumor to reference tissue ratio of maximum 6.12. These results suggest that [I-123]-VEGF is a potentially suitable tracer for tumor therapy evaluation. (c) 2005 Elsevier Inc. All rights reserved
In Vivo PET Detection of Lung Micrometastasis in Mice by Targeting Endothelial VCAM-1 Using a Dual-Contrast PET/MRI Probe
Current clinical diagnostic imaging methods for lung metastases are sensitive only to large tumours (1–2 mm cross-sectional diameter), and early detection can dramatically improve treatment. We have previously demonstrated that an antibody-targeted MRI contrast agent based on microparticles of iron oxide (MPIO; 1 μm diameter) enables the imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Using a mouse model of lung metastasis, upregulation of endothelial VCAM-1 expression was demonstrated in micrometastasis-associated vessels but not in normal lung tissue, and binding of VCAM-MPIO to these vessels was evident histologically. Owing to the lack of proton MRI signals in the lungs, we modified the VCAM-MPIO to include zirconium-89 (89Zr, t1/2 = 78.4 h) in order to allow the in vivo detection of lung metastases by positron emission tomography (PET). Using this new agent (89Zr-DFO-VCAM-MPIO), it was possible to detect the presence of micrometastases within the lung in vivo from ca. 140 μm in diameter. Histological analysis combined with autoradiography confirmed the specific binding of the agent to the VCAM-1 expressing vasculature at the sites of pulmonary micrometastases. By retaining the original VCAM-MPIO as the basis for this new molecular contrast agent, we have created a dual-modality (PET/MRI) agent for the concurrent detection of lung and brain micrometastases
MRI-guided radiotherapy of the SK-N-SH neuroblastoma xenograft model using a small animal radiation research platform
Objective: Neuroblastoma has one of the lowest survival rates of all childhood cancers, despite the use of intensive treatment regimens. Preclinical models of neuroblastoma are essential for testing new multimodality protocols, including those that involve radiotherapy (RT). The aim of this study was to develop a robust method for RT planning and tumour response monitoring based on combined MRI and cone-beam CT (CBCT) imaging and to apply it to a widely studied mouse xenograft model of neuroblastoma, SK-N-SH. Methods: As part of a tumour growth inhibition study, SK-N-SH xenografts were generated in BALB/c nu/nu mice. Mice (n58) were placed in a printed MR-And CT-compatible plastic cradle, imaged using a 4.7-T MRI scanner and then transferred to a small animal radiation research platform (SARRP) irradiator with on-board CBCT. MRI/CBCT co-registration was performed to enable RT planning using the soft-Tissue contrast afforded by MRI prior to delivery of RT (5Gy). Tumour response was assessed by serial MRI and calliper measurements. Results: SK-N-SH xenografts formed soft, deformable tumours that could not be differentiated from surrounding normal tissues using CBCT. MR images, which allowed clear delineation of tumours, were successfully coregistered with CBCT images, allowing conformal RT to be delivered. MRI measurements of tumour volume 4 days after RT correlated strongly with length of survival time. Conclusion: MRI allowed precision RT of SK-N-SH tumours and provided an accurate means of measuring tumour response. Advances in knowledge: MRI-based RT planning of murine tumours is feasible using an SARRP irradiator
The use of thermographic imaging to evaluate therapeutic response in human tumour xenograft models
YesNon-invasive methods to monitor tumour growth are an important goal in cancer drug development. Thermographic imaging systems offer potential in this area, since a change in temperature is known to be induced due to changes within the tumour microenvironment. This study demonstrates that this imaging modality can be applied to a broad range of tumour xenografts and also, for the first time, the methodology’s suitability to assess anti-cancer agent efficacy. Mice bearing subcutaneously implanted H460 lung cancer xenografts were treated with a novel vascular disrupting agent, ICT-2552, and the cytotoxin doxorubicin. The effects on tumour temperature were assessed using thermographic imaging over the first 6 hours post-administration and subsequently a further 7 days. For ICT-2552 a significant initial temperature drop was observed, whilst for both agents a significant temperature drop was seen compared to controls over the longer time period. Thus thermographic imaging can detect functional differences (manifesting as temperature reductions) in the tumour response to these anti-cancer agents compared to controls. Importantly, these effects can be detected in the first few hours following treatment and therefore the tumour is observable non-invasively. As discussed, this technique will have considerable 3Rs benefits in terms of reduction and refinement of animal use.University of Bradfor
Imaging PARP with [18F]rucaparib in pancreatic cancer models
Supplementary Information is available online at: https://link.springer.com/article/10.1007/s00259-022-05835-4#Sec18 .Purpose:
Rucaparib, an FDA-approved PARP inhibitor, is used as a single agent in maintenance therapy to provide promising treatment efficacy with an acceptable safety profile in various types of BRCA-mutated cancers. However, not all patients receive the same benefit from rucaparib-maintenance therapy. A predictive biomarker to help with patient selection for rucaparib treatment and predict clinical benefit is therefore warranted. With this aim, we developed [18F]rucaparib, an 18F-labelled isotopologue of rucaparib, and employed it as a PARP-targeting agent for cancer imaging with PET. Here, we report the in vitro and in vivo evaluation of [18F]rucaparib in human pancreatic cancer models.
Method:
We incorporated the positron-emitting 18F isotope into rucaparib, enabling its use as a PET imaging agent. [18F]rucaparib binds to the DNA damage repair enzyme, PARP, allowing direct visualisation and measurement of PARP in cancerous models before and after PARP inhibition or other genotoxic cancer therapies, providing critical information for cancer diagnosis and therapy. Proof-of-concept evaluations were determined in pancreatic cancer models.
Results:
Uptake of [18F]rucaparib was found to be mainly dependent on PARP1 expression. Induction of DNA damage increased PARP expression, thereby increasing uptake of [18F]rucaparib. In vivo studies revealed relatively fast blood clearance of [18F]rucaparib in PSN1 tumour-bearing mice, with a tumour uptake of 5.5 ± 0.5%ID/g (1 h after i.v. administration). In vitro and in vivo studies showed significant reduction of [18F]rucaparib uptake by addition of different PARP inhibitors, indicating PARP-selective binding.
Conclusion:
Taken together, we demonstrate the potential of [18F]rucaparib as a non-invasive PARP-targeting imaging agent for pancreatic cancers.This research was supported by Cancer Research UK through the Oxford Institute for Radiation Oncology, Medical Research Council (MRC) (MR/R01695X/1, G.D. and F.G., and H3R00580, C.Y.C) and Pancreatic Cancer UK (PCUK H3R00510, C.Y.C)
Imaging DNA Damage Repair In Vivo After 177Lu-DOTATATE Therapy
Molecular radiotherapy using 177Lu-DOTATATE is a most effective treatment for somatostatin receptor-expressing neuroendocrine tumors. Despite its frequent and successful use in the clinic, little or no radiobiologic considerations are made at the time of treatment planning or delivery. On positive uptake on octreotide-based PET/SPECT imaging, treatment is usually administered as a standard dose and number of cycles without adjustment for peptide uptake, dosimetry, or radiobiologic and DNA damage effects in the tumor. Here, we visualized and quantified the extent of DNA damage response after 177Lu-DOTATATE therapy using SPECT imaging with 111In-anti-γH2AX-TAT. This work was a proof-of-principle study of this in vivo noninvasive biodosimeter with β-emitting therapeutic radiopharmaceuticals. Methods: Six cell lines were exposed to external-beam radiotherapy (EBRT) or 177Lu-DOTATATE, after which the number of γH2AX foci and the clonogenic survival were measured. Mice bearing CA20948 somatostatin receptor-positive tumor xenografts were treated with 17
Cell penetrating peptides for in vivo molecular imaging applications.
Cell penetrating peptides (CPPs) are a relatively new class of peptides that have the promising capability to cross cell membranes. While details remain to be resolved, various non-receptor-mediated endocytic pathways likely contribute most to the cell penetrating properties of these peptides. CPPs have been used to deliver many different cargos - ranging from radionuclides and other peptides to antibodies and nanoparticles - into cells. Besides many different drug delivery applications, CPPs have also seen a limited use in molecular imaging. Molecular imaging of intracellular and intranuclear targets, by techniques such as SPECT, PET, optical imaging, and MRI, relies heavily on the delivery of contrast agents to the cytoplasm and/or nuclei of the target tissue. Therefore, the number of applications in molecular imaging of intracellular targets has remained relatively low, because of the effective barrier presented by the cell membrane. One of the key strategies to overcome this challenge is the introduction of membrane-transducing peptides in the design of new contrast agents. This review presents an overview of the literature on CPPs, focusing on their use for molecular imaging. Applications using proteins and peptides, DNA/RNA, and CPP-loaded cells as the imaging agents will be looked at. Moreover, the difficulties and pitfalls regarding the use of CPPs in molecular imaging will be discussed
Imaging of cell trafficking and cell tissue homing
The book first presents introductory material on small animal imaging, therapy, and research ethics. It next covers ionizing radiation and nonionizing radiation methods in small animal imaging, hybrid imaging, and imaging agents
- …