38 research outputs found

    Laser-induced microinjury of the corneal basal epithelium and imaging of resident macrophage responses in a live, whole-eye preparation

    Get PDF
    The corneal epithelium is continuously subjected to external stimuli that results in varying degrees of cellular damage. The use of live-cell imaging approaches has facilitated understanding of the cellular and molecular mechanisms underlying the corneal epithelial wound healing process. Here, we describe a live, ex vivo, whole-eye approach using laser scanning confocal microscopy to simultaneously induce and visualize short-term cellular responses following microdamage to the corneal epithelium. Live-cell imaging of corneal cell layers was enabled using the lipophilic fluorescent dyes, SGC5 or FM4-64, which, when injected into the anterior chamber of enucleated eyes, readily penetrated and labelled cell membranes. Necrotic microdamage to a defined region (30 μm x 30 μm) through the central plane of the corneal basal epithelium was induced by continuously scanning for at least one minute using high laser power and was dependent on the presence of lipophilic fluorescent dye. This whole-mount live-cell imaging and microdamage approach was used to examine the behavior of Cx3cr1:GFP-expressing resident corneal stromal macrophages (RCSMs). In undamaged corneas, RCSMs remained stationary, but exhibited a constant extension and retraction of short (~5 μm) semicircular, pseudopodia-like processes reminiscent of what has previously been reported in corneal dendritic cells. Within minutes of microdamage, nearby anterior RCSMs became highly polarized and extended projections towards the damaged region. The extension of the processes plateaued after about 30 minutes and remained stable over the course of 2-3 hours of imaging. Retrospective immunolabeling showed that these responding RCSMs were MHC class II+. This study adds to existing knowledge of immune cell behavior in response to corneal damage and introduces a simple corneal epithelial microdamage and wound healing paradigm

    The Australasian Resuscitation In Sepsis Evaluation : fluids or vasopressors in emergency department sepsis (ARISE FLUIDS), a multi-centre observational study describing current practice in Australia and New Zealand

    Get PDF
    Objectives: To describe haemodynamic resuscitation practices in ED patients with suspected sepsis and hypotension. Methods: This was a prospective, multicentre, observational study conducted in 70 hospitals in Australia and New Zealand between September 2018 and January 2019. Consecutive adults presenting to the ED during a 30-day period at each site, with suspected sepsis and hypotension (systolic blood pressure <100 mmHg) despite at least 1000 mL fluid resuscitation, were eligible. Data included baseline demographics, clinical and laboratory variables and intravenous fluid volume administered, vasopressor administration at baseline and 6- and 24-h post-enrolment, time to antimicrobial administration, intensive care admission, organ support and in-hospital mortality. Results: A total of 4477 patients were screened and 591 were included with a mean (standard deviation) age of 62 (19) years, Acute Physiology and Chronic Health Evaluation II score 15.2 (6.6) and a median (interquartile range) systolic blood pressure of 94 mmHg (87–100). Median time to first intravenous antimicrobials was 77 min (42–148). A vasopressor infusion was commenced within 24 h in 177 (30.2%) patients, with noradrenaline the most frequently used (n = 138, 78%). A median of 2000 mL (1500–3000) of intravenous fluids was administered prior to commencing vasopressors. The total volume of fluid administered from pre-enrolment to 24 h was 4200 mL (3000–5661), with a range from 1000 to 12 200 mL. Two hundred and eighteen patients (37.1%) were admitted to an intensive care unit. Overall in-hospital mortality was 6.2% (95% confidence interval 4.4–8.5%). Conclusion: Current resuscitation practice in patients with sepsis and hypotension varies widely and occupies the spectrum between a restricted volume/earlier vasopressor and liberal fluid/later vasopressor strategy

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Brevity of the Ca 2+

    No full text

    Synaptic Activation of T-Type Ca 2+

    No full text

    Post-Receptor Adaptation: Lighting Up the Details

    Get PDF
    SummaryThe very first rays of the rising sun enrich our visual world with spectacular detail. A recent study reveals how retinal circuits downstream of photoreceptors ‘functionally re-wire’ to trade-off sensitivity for high spatial acuity during night–day transitions

    Genotype-specific effects of Mecp2 loss-of-function on morphology of Layer V pyramidal neurons in heterozygous female Rett Syndrome model mice

    No full text
    Rett Syndrome (RTT) is a progressive neurological disorder primarily caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). The heterozygous female brain consists of mosaic of neurons containing both wildtype MeCP2 (MeCP2+) and mutant MeCP2 (MeCP2-). 3-dimensional morphological analysis was performed on individually genotyped layer V pyramidal neurons in the primary motor cortex of heterozygous (Mecp2+/-) and wild-type (Mecp2+/+) female mice (>6 mo.) from the Mecp2tm1.1Jae line. Comparing basal dendrite morphology, soma and nuclear size of MeCP2+ to MeCP2- neurons reveals a significant cell autonomous, genotype specific effect of Mecp2. MeCP2- neurons have 15% less total basal dendritic length, predominantly in the region 70-130 μm from the cell body and on average 3 fewer branch points, specifically loss in the 2nd and 3rd branch orders. Soma and nuclear areas of neurons of mice were analyzed across a range of ages (5-21 mo.) and X-chromosome inactivation (XCI) ratios (12-56%). On average, MeCP2- somata and nuclei were 15% and 13% smaller than MeCP2+ neurons respectively. In most respects branching morphology of neurons in wild-type brains (MeCP2 WT) was not distinguishable from MeCP2+ but somata and nuclei of MeCP2 WT neurons were larger than those of MeCP2+ neurons. These data reveal cell autonomous effects of Mecp2 mutation on dendritic morphology, but also suggest non-cell autonomous effects with respect to cell size. MeCP2+ and MeCP2- neuron sizes were not correlated with age, but were correlated with XCI ratio. Unexpectedly the MeCP2- neurons were smallest in brains where the XCI ratio was highly skewed towards MeCP2+, i.e. wild-type. This raises the possibility of cell non-autonomous effects that act through mechanisms other than globally secreted factors; perhaps competition for synaptic connections influences cell size and morphology in the genotypically mosaic brain of RTT model mice
    corecore