191 research outputs found

    Alterations in regulatory T-cells: rediscovered pathways in immunotoxicology

    Get PDF
    In addition to the effector T-cells subsets, T-cells can also differentiate into cells that play a suppressive or regulatory role in adaptive immune responses. The cell types currently identified as regulatory T-cells (T(regs)) include natural or thymic-derived T(regs), T-cells which express Foxp3(+)CD25(+)CD4(+) and can suppress immune responses to autoreactive T-cells, as well as inducible T(regs), that are generated from na\uefve T-cells in the periphery after interaction with antigens presented by dendritic cells. Inducible T(regs) include T(H)3 cells, T(r)1 cells, and Foxp3(+)-inducible T(regs). T(regs) have been shown to be critical in the maintenance of immune responses and T-cell homeostasis. These cells play an important role in suppressing responses to self-antigens and in controlling inappropriate responses to non-self-antigens, such as commensal bacteria or food in the gut. For example, depletion of CD4(+)CD25(+) T(regs) from mice resulted in the development of multi-organ autoimmune diseases. CD4(+)CD25(+) T(regs) and/or IL-10-producing T(r)1 cells are capable of suppressing or attenuating T(H)2 responses to allergens. Moreover, adoptive transfer of CD4(+)CD25(+) T(regs) from healthy to diseased animals resulted in the prevention or cure of certain autoimmune diseases, and was able to induce transplantation tolerance. Clinical improvement seen after allergen immunotherapy for allergic diseases such as rhinitis and asthma is associated with the induction of IL-10- and TGF\u3b2-producing T(r)1 cells as well as FoxP3-expressing IL-10 T-cells, with resulting suppression of the T(H)2 cytokine milieu. Activation, expansion, or suppression of CD4(+)CD25(+) T(regs) in vivo by xenobiotics, including drugs, may therefore represent a relevant mechanism underlying immunotoxicity, including immunosuppression, allergic asthma, and autoimmune diseases

    Controlling Viral Immuno-Inflammatory Lesions by Modulating Aryl Hydrocarbon Receptor Signaling

    Get PDF
    Ocular herpes simplex virus infection can cause a blinding CD4+ T cell orchestrated immuno-inflammatory lesion in the cornea called Stromal Keratitis (SK). A key to controlling the severity of SK lesions is to suppress the activity of T cells that orchestrate lesions and enhance the representation of regulatory cells that inhibit effector cell function. In this report we show that a single administration of TCDD (2, 3, 7, 8- Tetrachlorodibenzo-p-dioxin), a non-physiological ligand for the AhR receptor, was an effective means of reducing the severity of SK lesions. It acted by causing apoptosis of Foxp3- CD4+ T cells but had no effect on Foxp3+ CD4+ Tregs. TCDD also decreased the proliferation of Foxp3- CD4+ T cells. The consequence was an increase in the ratio of Tregs to T effectors which likely accounted for the reduced inflammatory responses. In addition, in vitro studies revealed that TCDD addition to anti-CD3/CD28 stimulated naïve CD4+ T cells caused a significant induction of Tregs, but inhibited the differentiation of Th1 and Th17 cells. Since a single TCDD administration given after the disease process had been initiated generated long lasting anti-inflammatory effects, the approach holds promise as a therapeutic means of controlling virus induced inflammatory lesions

    The Prospects for Payment for Ecosystem Services (PES) in Vietnam: A Look at Three Payment Schemes

    Get PDF
    Global conservation discourses and practices increasingly rely on market-based solutions to fulfill the dual objective of forest conservation and economic development. Although varied, these interventions are premised on the assumption that natural resources are most effectively managed and preserved while benefiting livelihoods if the market-incentives of a liberalised economy are correctly in place. By examining three nationally supported payment for ecosystem service (PES) schemes in Vietnam we show how insecure land tenure, high transaction costs and high opportunity costs can undermine the long-term benefits of PES programmes for local households and, hence, potentially threaten their livelihood viability. In many cases, the income from PES programmes does not reach the poor because of political and economic constraints. Local elite capture of PES benefits through the monopolization of access to forestland and existing state forestry management are identified as key problems. We argue that as PES schemes create a market for ecosystem services, such markets must be understood not simply as bald economic exchanges between ‘rational actors’ but rather as exchanges embedded in particular socio-political and historical contexts to support the sustainable use of forest resources and local livelihoods in Vietnam

    Protecting Endangered Species: Do the Main Legislative Tools Work?

    Get PDF
    It is critical to assess the effectiveness of the tools used to protect endangered species. The main tools enabled under the U.S. Endangered Species Act (ESA) to promote species recovery are funding, recovery plan development and critical habitat designation. Earlier studies sometimes found that statistically significant effects of these tools could be detected, but they have not answered the question of whether the effects were large enough to be biologically meaningful. Here, we ask: how much does the recovery status of ESA-listed species improve with the application of these tools? We used species' staus reports to Congress from 1988 to 2006 to quantify two measures of recovery for 1179 species. We related these to the amount of federal funding, years with a recovery plan, years with critical habitat designation, the amount of peer-reviewed scientific information, and time listed. We found that change in recovery status of listed species was, at best, only very weakly related to any of these tools. Recovery was positively related to the number of years listed, years with a recovery plan, and funding, however, these tools combined explain <13% of the variation in recovery status among species. Earlier studies that reported significant effects of these tools did not focus on effect sizes; however, they are in fact similarly small. One must conclude either that these tools are not very effective in promoting species' recovery, or (as we suspect) that species recovery data are so poor that it is impossible to tell whether the tools are effective or not. It is critically important to assess the effectiveness of tools used to promote species recovery; it is therefore also critically important to obtain population status data that are adequate to that task

    Activation of Aryl Hydrocarbon Receptor (AhR) Leads to Reciprocal Epigenetic Regulation of FoxP3 and IL-17 Expression and Amelioration of Experimental Colitis

    Get PDF
    Aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, is well characterized to regulate the biochemical and toxic effects of environmental chemicals. More recently, AhR activation has been shown to regulate the differentiation of Foxp3(+) Tregs as well as Th17 cells. However, the precise mechanisms are unclear. In the current study, we investigated the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand, on epigenetic regulation leading to altered Treg/Th17 differentiation, and consequent suppression of colitis.Dextran sodium sulphate (DSS) administration induced acute colitis in C57BL/6 mice, as shown by significant weight loss, shortening of colon, mucosal ulceration, and increased presence of CXCR3(+) T cells as well as inflammatory cytokines. Interestingly, a single dose of TCDD (25 µg/kg body weight) was able to attenuate all of the clinical and inflammatory markers of colitis. Analysis of T cells in the lamina propria (LP) and mesenteric lymph nodes (MLN), during colitis, revealed decreased presence of Tregs and increased induction of Th17 cells, which was reversed following TCDD treatment. Activation of T cells from AhR(+/+) but not AhR (-/-) mice, in the presence of TCDD, promoted increased differentiation of Tregs while inhibiting Th17 cells. Analysis of MLN or LP cells during colitis revealed increased methylation of CpG islands of Foxp3 and demethylation of IL-17 promoters, which was reversed following TCDD treatment.These studies demonstrate for the first time that AhR activation promotes epigenetic regulation thereby influencing reciprocal differentiation of Tregs and Th17 cells, and amelioration of inflammation

    Immune cell counts and risks of respiratory infections among infants exposed pre- and postnatally to organochlorine compounds: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early-life chemical exposure may influence immune system development, subsequently affecting child health. We investigated immunomodulatory potentials of polychlorinated biphenyls (PCBs) and <it>p,p'</it>-DDE in infants.</p> <p>Methods</p> <p>Prenatal exposure to PCBs and <it>p,p'</it>-DDE was estimated from maternal serum concentrations during pregnancy. Postnatal exposure was calculated from concentrations of the compounds in mother's milk, total number of nursing days, and percentage of full nursing each week during the 3 month nursing period. Number and types of infections among infants were registered by the mothers (N = 190). White blood cell counts (N = 86) and lymphocyte subsets (N = 52) were analyzed in a subgroup of infants at 3 months of age.</p> <p>Results</p> <p>Infants with the highest prenatal exposure to PCB congeners CB-28, CB-52 and CB-101 had an increased risk of respiratory infection during the study period. In contrast, the infection odds ratios (ORs) were highest among infants with the lowest prenatal mono-<it>ortho </it>PCB (CB-105, CB-118, CB-156, CB-167) and di-<it>ortho </it>PCB (CB-138, CB-153, CB-180) exposure, and postnatal mono- and di-<it>ortho </it>PCB, and <it>p,p'</it>-DDE exposure. Similar results were found for pre- and postnatal CB-153 exposure, a good marker for total PCB exposure. Altogether, a negative relationship was indicated between infections and total organochlorine compound exposure during the whole pre- and postnatal period. Prenatal exposure to CB-28, CB-52 and CB-101 was positively associated with numbers of lymphocytes and monocytes in infants 3 months after delivery. Prenatal exposure to <it>p,p'</it>-DDE was negatively associated with the percentage of eosinophils. No significant associations were found between PCB and <it>p,p'</it>-DDE exposure and numbers/percentages of lymphocyte subsets, after adjustment for potential confounders.</p> <p>Conclusion</p> <p>This hypothesis generating study suggests that background exposure to PCBs and <it>p,p'</it>-DDE early in life modulate immune system development. Strong correlations between mono- and di-<it>ortho </it>PCBs, and <it>p,p'</it>-DDE exposures make it difficult to identify the most important contributor to the suggested immunomodulation, and to separate effects due to pre- and postnatal exposure. The suggested PCB and <it>p,p'</it>-DDE modulation of infection risks may have consequences for the health development during childhood, since respiratory infections early in life may be risk factors for asthma and middle ear infections.</p

    Breast Cancer Stem-Like Cells Are Inhibited by a Non-Toxic Aryl Hydrocarbon Receptor Agonist

    Get PDF
    Cancer stem cells (CSCs) have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs) by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH). CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs.We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231) mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR) agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation). It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast. Thus, the anti-cancer effects of tranilast are AHR dependent.We show that tranilast is an AHR agonist with inhibitory effects on breast CSCs. It is effective against CSCs of triple-negative breast cancer cells selected for anti-cancer drug resistance. These results suggest it might find applications in the treatment of breast cancer

    AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish

    Get PDF
    The aryl hydrocarbon receptor (AHR) is well known for mediating the toxic effects of TCDD and has been a subject of intense research for over 30 years. Current investigations continue to uncover its endogenous and regulatory roles in a wide variety of cellular and molecular signaling processes. A zebrafish line with a mutation in ahr2 (ahr2hu3335), encoding the AHR paralogue responsible for mediating TCDD toxicity in zebrafish, was developed via Targeting Induced Local Lesions IN Genomes (TILLING) and predicted to express a non-functional AHR2 protein. We characterized AHR activity in the mutant line using TCDD and leflunomide as toxicological probes to investigate function, ligand binding and CYP1A induction patterns of paralogues AHR2, AHR1A and AHR1B. By evaluating TCDD-induced developmental toxicity, mRNA expression changes and CYP1A protein in the AHR2 mutant line, we determined that ahr2hu3335 zebrafish are functionally null. In silico modeling predicted differential binding of TCDD and leflunomide to the AHR paralogues. AHR1A is considered a non-functional pseudogene as it does not bind TCCD or mediate in vivo TCDD toxicity. Homology modeling, however, predicted a ligand binding conformation of AHR1A with leflunomide. AHR1A-dependent CYP1A immunohistochemical expression in the liver provided in vivo confirmation of the in silico docking studies. The ahr2hu3335 functional knockout line expands the experimental power of zebrafish to unravel the role of the AHR during development, as well as highlights potential activity of the other AHR paralogues in ligand-specific toxicological responses
    corecore