27 research outputs found

    Regulatory interactions between two actin nucleators, Spire and Cappuccino

    Get PDF
    Spire and Cappuccino are actin nucleation factors that are required to establish the polarity of Drosophila melanogaster oocytes. Their mutant phenotypes are nearly identical, and the proteins interact biochemically. We find that the interaction between Spire and Cappuccino family proteins is conserved across metazoan phyla and is mediated by binding of the formin homology 2 (FH2) domain from Cappuccino (or its mammalian homologue formin-2) to the kinase noncatalytic C-lobe domain (KIND) from Spire. In vitro, the KIND domain is a monomeric folded domain. Two KIND monomers bind each FH2 dimer with nanomolar affinity and strongly inhibit actin nucleation by the FH2 domain. In contrast, formation of the Spire–Cappuccino complex enhances actin nucleation by Spire. In Drosophila oocytes, Spire localizes to the cortex early in oogenesis and disappears around stage 10b, coincident with the onset of cytoplasmic streaming

    Diverse effects of RacV12 on cell transformation by Raf: partial inhibition of morphological transformation versus deregulation of cell cycle control

    Get PDF
    AbstractActivated Raf kinases and Rac GTPases were shown to cooperate in the oncogenic transformation of fibroblasts, which is characterised by the disassembly of the cellular actin cytoskeleton, a nearly complete loss of focal adhesion complexes and deregulated cell proliferation. This is surprising since the Rac GTPase induces actin structures and the adhesion of suspended cells to extracellular matrix proteins. NIH 3T3 cells expressing a hydroxytamoxifen-inducible oncogenic c-Raf-1–oestrogen receptor fusion protein (c-Raf-1-BxB-ERTM, N-BxB-ERTM cells) undergo morphological transformation upon stimulation of the Raf kinase. We show that treatment with the Rac, Rho and Cdc42 activating Escherichia coli toxin CNF1 or coexpression of an activated RacV12 mutant partially inhibits and reverses the disassembly of cellular actin structures and focal adhesion complexes by oncogenic Raf. Activation of the Rac GTPase restores actin structures and focal adhesion complexes at the cellular boundary, leading to spreading of the otherwise spindle-shaped Raf-transformed cells. Actin stress fibres, however, which are regulated by the function of the Rho GTPase, are disassembled by oncogenic Raf even in the presence of activated Rac and Rho. With respect to the RacV12-mediated spreading of Raf-transformed cells, we postulate an anti-oncogenic function of the activated Rac. Another feature of cell transformation is the deregulation of cell cycle control. NIH 3T3 cells expressing high levels of the c-Raf-1-BxB-ERTM protein undergo a cell cycle arrest upon stimulation of the oncogenic Raf kinase. Our results show that in N-BxB-ERTM-RacV12 cells the expression of the activated RacV12 mediates cell proliferation in the presence of high-intensity Raf signals and high levels of the Cdk inhibitor p21Cip1. These results indicate a pro-oncogenic function of the Rac GTPase with respect to the deregulation of cell cycle control

    Actomyosin organelle functions of SPIRE actin nucleators precede animal evolution

    Get PDF
    An important question in cell biology is how cytoskeletal proteins evolved and drove the development of novel structures and functions. Here we address the origin of SPIRE actin nucleators. Mammalian SPIREs work with RAB GTPases, formin (FMN)-subgroup actin assembly proteins and class-5 myosin (MYO5) motors to transport organelles along actin filaments towards the cell membrane. However, the origin and extent of functional conservation of SPIRE among species is unknown. Our sequence searches show that SPIRE exist throughout holozoans (animals and their closest single-celled relatives), but not other eukaryotes. SPIRE from unicellular holozoans (choanoflagellate), interacts with RAB, FMN and MYO5 proteins, nucleates actin filaments and complements mammalian SPIRE function in organelle transport. Meanwhile SPIRE and MYO5 proteins colocalise to organelles in Salpingoeca rosetta choanoflagellates. Based on these observations we propose that SPIRE originated in unicellular ancestors of animals providing an actin-myosin driven exocytic transport mechanism that may have contributed to the evolution of complex multicellular animals

    Microtubules as Platforms for Assaying Actin Polymerization In Vivo

    Get PDF
    The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process

    Rab27a co-ordinates actin-dependent transport by controlling organelle-associated motors and track assembly proteins

    Get PDF
    Abstract: Cell biologists generally consider that microtubules and actin play complementary roles in long- and short-distance transport in animal cells. On the contrary, using melanosomes of melanocytes as a model, we recently discovered that the motor protein myosin-Va works with dynamic actin tracks to drive long-range organelle dispersion in opposition to microtubules. This suggests that in animals, as in yeast and plants, myosin/actin can drive long-range transport. Here, we show that the SPIRE-type actin nucleators (predominantly SPIRE1) are Rab27a effectors that co-operate with formin-1 to generate actin tracks required for myosin-Va-dependent transport in melanocytes. Thus, in addition to melanophilin/myosin-Va, Rab27a can recruit SPIREs to melanosomes, thereby integrating motor and track assembly activity at the organelle membrane. Based on this, we suggest a model in which organelles and force generators (motors and track assemblers) are linked, forming an organelle-based, cell-wide network that allows their collective activity to rapidly disperse the population of organelles long-distance throughout the cytoplasm

    Expression patterns of the mouse Spir-2 actin nucleator

    No full text
    Spir proteins are the founding members of the novel class of WH2 domain containing actin nucleation factors. They initiate actin polymerization by binding of actin monomers to four WH2 domains in the central part of the proteins. Despite their ability to nucleate actin polymerization in vitro by themselves, Spir proteins form a regulatory complex with the distinct actin nucleators of the formin subgroup of formins. The mammalian genome encodes two spir genes, spir-1 and spir-2. The corresponding proteins have an identical structural array and share a high degree of homology. Here, we have addressed the yet unknown expression of the mouse spir-2 gene. Northern blot analysis revealed that the spir-2 gene is expressed as a single mRNA. During embryogenesis in situ hybridizations show spir-2 to be expressed in the developing nervous system and intestine. In adult mouse tissues highest expression of spir-2 was detected in the epithelial cells of the digestive tract and in neuronal cells of the nervous system. High expression was also detected in testical spermatocytes. In contrast to the restricted expression of the mouse spir-1 gene, which is mainly found in the nervous system, our data presented here show a distinct and broader expression pattern of the spir-2 gene and by this support a more general cell biological function of the novel actin nucleators

    Actin assembly mechanisms at a glance.

    Get PDF
    The actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites. Recent research has revealed that targeting and activation of actin filament nucleators, elongators and myosin motors are tightly coordinated by conserved protein complexes to orchestrate force generation. In this Cell Science at a Glance article and the accompanying poster, we summarize and discuss the current knowledge on the corresponding protein complexes and their modes of action in actin nucleation, elongation and force generation

    Spire1 and Myosin Vc promote Ca2+-evoked externalization of von Willebrand factor in endothelial cells

    Get PDF
    Weibel-Palade bodies (WPB) are endothelial cell-specific storage granules that regulate vascular hemostasis by releasing the platelet adhesion receptor von Willebrand factor (VWF) following stimulation. Fusion of WPB with the plasma membrane is accompanied by the formation of actin rings or coats that support the expulsion of large multimeric VWF fibers. However, factor(s) organizing these actin ring structures have remained elusive. We now identify the actin-binding proteins Spire1 and Myosin Vc (MyoVc) as cytosolic factors that associate with WPB and are involved in actin ring formation at WPB-plasma membrane fusion sites. We show that both, Spire1 and MyoVc localize only to mature WPB and that upon Ca2+ evoked exocytosis of WPB, Spire1 and MyoVc together with F-actin concentrate in ring-like structures at the fusion sites. Depletion of Spire1 or MyoVc reduces the number of these actin rings and decreases the amount of VWF externalized to the cell surface after histamine stimulation

    Spire-Type Actin Nucleators Cooperate with Formin-2 to Drive Asymmetric Oocyte Division

    Get PDF
    Oocytes mature into eggs by extruding half of their chromosomes in a small cell termed the polar body. Asymmetric oocyte division is essential for fertility [1], but despite its importance, little is known about its mechanism. In mammals, the meiotic spindle initially forms close to the center of the oocyte. Thus, two steps are required for asymmetric meiotic division: first, asymmetric spindle positioning and second, polar body extrusion. Here, we identify Spire1 and Spire2 as new key factors in asymmetric division of mouse oocytes. Spire proteins are novel types of actin nucleators that drive nucleation of actin filaments with their four WH2 actin-binding domains [2–6]. We show that Spire1 and Spire2 first mediate asymmetric spindle positioning by assembling an actin network that serves as a substrate for spindle movement. Second, they drive polar body extrusion by promoting assembly of the cleavage furrow. Our data suggest that Spire1 and Spire2 cooperate with Formin-2 (Fmn2) to nucleate actin filaments in mouse oocytes and that both types of nucleators act as a functional unit. This study not only reveals how Spire1 and Spire2 drive two critical steps of asymmetric oocyte division, but it also uncovers the first physiological function of Spire-type actin nucleators in vertebrates
    corecore