140 research outputs found
In connection with identification of VLF emissions before L'Aquila earthquake
The present paper deals with an attempt to check up the theoretical model of
self-generated seismo-electromagnetic oscillations of LAI system on the basis
of retrospective data. Application of the offered simple model enables one to
explain qualitatively the mechanism of VLF electromagnetic emission initiated
in the process of an earthquake preparation. It is worth to pay attention to
the fact that frequency changes from MHz to kHz in electromagnetic emission
spectrum comes to a good agreement with avalanche-like unstable model of fault
formation. L'Aquila earthquake taken as an example to isolate reliably the
Earth VLF emission from the magnetospheric electromagnetic emission of the same
frequency range, MHD criterion is offered together with geomagnetic activity
indexes. On the basis of the considered three earthquakes, according to the
opinion of authors the model of self-generated seismo-electromagnetic
oscillations of the LAI system will enable us to approach the problem of
resolution of earthquake prediction by certain accuracy.Comment: 16 pages, 4 figures. arXiv admin note: text overlap with
arXiv:0910.0797 by other author
Specific variations of the atmospheric electric field potential gradient as a possible precursor of Caucasus earthquakes
The subject of the research is the study of anomalous disturbances of the gradient of electric field potential of the atmosphere as possible precursors of earthquakes. <br><br> In order to reveal such precursor Dusheti observatory (φ=42.05; λ=44.42) records of electric field potential's gradient (EFPG) of the atmosphere are considered for 41 earthquakes (M&ge;5.0) occurrence moments in the Caucasus region. <br><br> Seasonal variations of atmospheric electric field potential gradient and inter overlapping influence of meteorological parameters upon this parameter are studied. Original method of "filtration" is devised and used in order to identify the effect of EFPG "clear" anomalies. <br><br> The so-called "clear" anomalies are revealed from (&minus;148.9 V/m) to 188.5 V/m limits and they are connected with occurrence moments of 29 earthquakes out of 41 discussed earthquakes (about 71%). "clear" anomalies manifest themselves in 11-day precursor window. <br><br> Duration of anomalies is from 40 to 90 min
Variation in the COVID-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis
Background The infection-fatality ratio (IFR) is a metric that quantifies the likelihood of an individual dying once infected with a pathogen. Understanding the determinants of IFR variation for COVID-19, the disease caused by the SARS-CoV-2 virus, has direct implications for mitigation efforts with respect to clinical practice, non-pharmaceutical interventions, and the prioritisation of risk groups for targeted vaccine delivery. The IFR is also a crucial parameter in COVID-19 dynamic transmission models, providing a way to convert a population's mortality rate into an estimate of infections.Methods We estimated age-specific and all-age IFR by matching seroprevalence surveys to total COVID-19 mortality rates in a population. The term total COVID-19 mortality refers to an estimate of the total number of deaths directly attributable to COVID-19. After applying exclusion criteria to 5131 seroprevalence surveys, the IFR analyses were informed by 2073 all-age surveys and 718 age-specific surveys (3012 age-specific observations). When seroprevalence was reported by age group, we split total COVID-19 mortality into corresponding age groups using a Bayesian hierarchical model to characterise the non-linear age pattern of reported deaths for a given location. To remove the impact of vaccines on the estimated IFR age pattern, we excluded age-specific observations of seroprevalence and deaths that occurred after vaccines were introduced in a location. We estimated age-specific IFR with a non-linear meta-regression and used the resulting age pattern to standardise all-age IFR observations to the global age distribution. All IFR observations were adjusted for baseline and waning antibody-test sensitivity. We then modelled age-standardised IFR as a function of time, geography, and an ensemble of 100 of the top-performing covariate sets. The covariates included seven clinical predictors (eg, age-standardised obesity prevalence) and two measures of health system performance. Final estimates for 190 countries and territories, as well as subnational locations in 11 countries and territories, were obtained by predicting age-standardised IFR conditional on covariates and reversing the age standardisation.Findings We report IFR estimates for April 15, 2020, to January 1, 2021, the period before the introduction of vaccines and widespread evolution of variants. We found substantial heterogeneity in the IFR by age, location, and time. Age-specific IFR estimates form a J shape, with the lowest IFR occurring at age 7 years (0-0023%, 95% uncertainty interval [UI] 0-0015-0-0039) and increasing exponentially through ages 30 years (0-0573%, 0-0418-0-0870), 60 years (1-0035%, 0-7002-1-5727), and 90 years (20-3292%, 14-6888-28-9754). The countries with the highest IFR on July 15, 2020, were Portugal (2-085%, 0-946-4-395), Monaco (1-778%, 1-265-2-915), Japan (1-750%, 1-302-2-690), Spain (1-710%, 0-991-2-718), and Greece (1-637%, 1-155-2-678). All-age IFR varied by a factor of more than 30 among 190 countries and territories.After age standardisation, the countries with the highest IFR on July 15, 2020, were Peru (0-911%, 0-636-1-538), Portugal (0-850%, 0-386-1-793), Oman (0-762%, 0-381-1-399), Spain (0-751%, 0-435-1-193), and Mexico (0-717%, 0-426-1-404). Subnational locations with high IFRs also included hotspots in the UK and southern and eastern states of the USA. Sub-Saharan African countries and Asian countries generally had the lowest all-age and age-standardised IFRs. Population age structure accounted for 74% of logit-scale variation in IFRs estimated for 39 in-sample countries on July 15, 2020. A post-hoc analysis showed that high rates of transmission in the care home population might account for higher IFRs in some locations. Among all countries and territories, we found that the median IFR decreased from 0-466% (interquartile range 0-223-0-840) to 0-314% (0-143-0-551) between April 15, 2020, and Jan 1, 2021.Interpretation Estimating the IFR for global populations helps to identify relative vulnerabilities to COVID-19. Information about how IFR varies by age, time, and location informs clinical practice and non-pharmaceutical interventions like physical distancing measures, and underpins vaccine risk stratification. IFR and mortality risk form a J shape with respect to age, which previous research, such as that by Glynn and Moss in 2020, has identified to be a common pattern among infectious diseases. Understanding the experience of a population with COVID-19 mortality requires consideration for local factors; IFRs varied by a factor of more than 30 among 190 countries and territories in this analysis. In particular, the presence of elevated age-standardised IFRs in countries with well resourced health-care systems indicates that factors beyond health-care capacity are important. Potential extenuating circumstances include outbreaks among care home residents, variable burdens of severe cases, and the population prevalence of comorbid conditions that increase the severity of COVID-19 disease. During the pre-vaccine period, the estimated 33% decrease in median IFR over 8 months suggests that treatment for COVID-19 has improved over time. Estimating IFR for the pre-vaccine era provides an important baseline for describing the progression of COVID-19 mortality patterns.Funding Bill & Melinda Gates Foundation, J Stanton, T Gillespie, and J and E Nordstrom Copyright (c) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license
The global burden of cancer 2013 global burden of disease cancer collaboration
Importance Cancer is among the leading causes of death worldwide. Current estimates of cancer burden in individual countries and regions are necessary to inform local cancer control strategies. Objective To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 28 cancers in 188 countries by sex from 1990 to 2013. Evidence Review The general methodology of the Global Burden of Disease (GBD) 2013 study was used. Cancer registries were the source for cancer incidence data as well as mortality incidence (MI) ratios. Sources for cause of death data include vital registration system data, verbal autopsy studies, and other sources. The MI ratios were used to transform incidence data to mortality estimates and cause of death estimates to incidence estimates. Cancer prevalence was estimated using MI ratios as surrogates for survival data; YLDs were calculated by multiplying prevalence estimates with disability weights, which were derived from population-based surveys; YLLs were computed by multiplying the number of estimated cancer deaths at each age with a reference life expectancy; and DALYs were calculated as the sum of YLDs and YLLs. Findings In 2013 there were 14.9 million incident cancer cases, 8.2 million deaths, and 196.3 million DALYs. Prostate cancer was the leading cause for cancer incidence (1.4 million) for men and breast cancer for women (1.8 million). Tracheal, bronchus, and lung (TBL) cancer was the leading cause for cancer death in men and women, with 1.6 million deaths. For men, TBL cancer was the leading cause of DALYs (24.9 million). For women, breast cancer was the leading cause of DALYs (13.1 million). Age-standardized incidence rates (ASIRs) per 100 000 and age-standardized death rates (ASDRs) per 100 000 for both sexes in 2013 were higher in developing vs developed countries for stomach cancer (ASIR, 17 vs 14; ASDR, 15 vs 11), liver cancer (ASIR, 15 vs 7; ASDR, 16 vs 7), esophageal cancer (ASIR, 9 vs 4; ASDR, 9 vs 4), cervical cancer (ASIR, 8 vs 5; ASDR, 4 vs 2), lip and oral cavity cancer (ASIR, 7 vs 6; ASDR, 2 vs 2), and nasopharyngeal cancer (ASIR, 1.5 vs 0.4; ASDR, 1.2 vs 0.3). Between 1990 and 2013, ASIRs for all cancers combined (except nonmelanoma skin cancer and Kaposi sarcoma) increased by more than 10% in 113 countries and decreased by more than 10% in 12 of 188 countries. Conclusions and Relevance Cancer poses a major threat to public health worldwide, and incidence rates have increased in most countries since 1990. The trend is a particular threat to developing nations with health systems that are ill-equipped to deal with complex and expensive cancer treatments. The annual update on the Global Burden of Cancer will provide all stakeholders with timely estimates to guide policy efforts in cancer prevention, screening, treatment, and palliation
The Global Burden of Cancer 2013
IMPORTANCE: Cancer is among the leading causes of death worldwide. Current estimates of cancer burden in individual countries and regions are necessary to inform local cancer control strategies. OBJECTIVE: To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 28 cancers in 188 countries by sex from 1990 to 2013. EVIDENCE REVIEW: The general methodology of the Global Burden of Disease (GBD) 2013 study was used. Cancer registries were the source for cancer incidence data as well as mortality incidence (MI) ratios. Sources for cause of death data include vital registration system data, verbal autopsy studies, and other sources. The MI ratios were used to transform incidence data to mortality estimates and cause of death estimates to incidence estimates. Cancer prevalence was estimated using MI ratios as surrogates for survival data; YLDs were calculated by multiplying prevalence estimates with disability weights, which were derived from population-based surveys; YLLs were computed by multiplying the number of estimated cancer deaths at each age with a reference life expectancy; and DALYs were calculated as the sum of YLDs and YLLs. FINDINGS: In 2013 there were 14.9 million incident cancer cases, 8.2 million deaths, and 196.3 million DALYs. Prostate cancer was the leading cause for cancer incidence (1.4 million) for men and breast cancer for women (1.8 million). Tracheal, bronchus, and lung (TBL) cancer was the leading cause for cancer death in men and women, with 1.6 million deaths. For men, TBL cancer was the leading cause of DALYs (24.9 million). For women, breast cancer was the leading cause of DALYs (13.1 million). Age-standardized incidence rates (ASIRs) per 100 000 and age-standardized death rates (ASDRs) per 100 000 for both sexes in 2013 were higher in developing vs developed countries for stomach cancer (ASIR, 17 vs 14; ASDR, 15 vs 11), liver cancer (ASIR, 15 vs 7; ASDR, 16 vs 7), esophageal cancer (ASIR, 9 vs 4; ASDR, 9 vs 4), cervical cancer (ASIR, 8 vs 5; ASDR, 4 vs 2), lip and oral cavity cancer (ASIR, 7 vs 6; ASDR, 2 vs 2), and nasopharyngeal cancer (ASIR, 1.5 vs 0.4; ASDR, 1.2 vs 0.3). Between 1990 and 2013, ASIRs for all cancers combined (except nonmelanoma skin cancer and Kaposi sarcoma) increased by more than 10 in 113 countries and decreased by more than 10 in 12 of 188 countries. CONCLUSIONS AND RELEVANCE: Cancer poses a major threat to public health worldwide, and incidence rates have increased in most countries since 1990. The trend is a particular threat to developing nations with health systems that are ill-equipped to deal with complex and expensive cancer treatments. The annual update on the Global Burden of Cancer will provide all stakeholders with timely estimates to guide policy efforts in cancer prevention, screening, treatment, and palliation. Copyright 2015 American Medical Association. All rights reserved
Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013
Background Up-to-date evidence on levels and trends for age-sex-specific all-cause and cause-specific mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specific all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specific causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65·3 years (UI 65·0-65·6) in 1990, to 71·5 years (UI 71·0-71·9) in 2013, while the number of deaths increased from 47·5 million (UI 46·8-48·2) to 54·9 million (UI 53·6-56·3) over the same interval. Global progress masked variation by age and sex: for children, average absolute differences between countries decreased but relative differences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative differences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10·7%, from 4·3 million deaths in 1990 to 4·8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specific mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade. Funding Bill & Melinda Gates Foundation
Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015
Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography–year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4–61·9) in 1980 to 71·8 years (71·5–72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7–17·4), to 62·6 years (56·5–70·2). Total deaths increased by 4·1% (2·6–5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8–18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6–16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9–14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1–44·6), malaria (43·1%, 34·7–51·8), neonatal preterm birth complications (29·8%, 24·8–34·9), and maternal disorders (29·1%, 19·3–37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000–183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000–532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding Bill & Melinda Gates Foundation
- …