845 research outputs found

    Lyman-alpha wing absorption in cool white dwarf stars

    Full text link
    Kowalski & Saumon (2006) identified the missing absorption mechanism in the observed spectra of cool white dwarf stars as the Ly-alpha red wing formed by the collisions between atomic and molecular hydrogen and successfully explained entire spectra of many cool DA-type white dwarfs. Owing to the important astrophysical implications of this issue, we present here an independent assessment of the process. For this purpose, we compute free-free quasi-molecular absorption in Lyman-alpha due to collisions with H and H2 within the one-perturber, quasi-static approximation. Line cross-sections are obtained using theoretical molecular potentials to describe the interaction between the radiating atom and the perturber. The variation of the electric-dipole transition moment with the interparticle distance is also considered. Six and two allowed electric dipole transitions due to H-H and H-H2 collisions, respectively, are taken into account. The new theoretical Lyman-alpha line profiles are then incorporated in our stellar atmosphere program for the computation of synthetic spectra and colours of DA-type white dwarfs. Illustrative model atmospheres and spectral energy distributions are computed, which show that Ly-alpha broadening by atoms and molecules has a significant effect on the white dwarf atmosphere models. The inclusion of this collision-induced opacity significantly reddens spectral energy distributions and affects the broadband colour indices for model atmospheres with Teff<5000 K. These results confirm those previously obtained by Kowalski & Saumon (2006). Our study points out the need for reliable evaluations of H3 potential energy surfaces covering a large region of nuclear configurations, in order to obtain a better description of H-H2 collisions and a more accurate evaluation of their influence on the spectrum of cool white dwarfs.Comment: 11 pages, 12 figures, 1 table, to be published in MNRA

    Digestibility of Sunflower Seeds in Swine Diets

    Get PDF
    Limited research has been performed using sunflower seeds as an ingredient in swine diets. Because of the large amount of sunflowers produced in South Dakota, it would be beneficial to determine their usefulness as a feed ingredient in livestock rations. Work conducted at North Dakota has shown levels of over 10% sunflower seeds in diets of growing- finishing pigs produced oily carcasses. Previous research at this station (SWINE 80-8) has shown the maximum level of ground, whole sunflower seeds to be fed to sows during late gestation and early lactation is between 25 and 50%. In order to utilize sunflower seeds in swine diets more efficiently, the digestibility of the various nutrient fractions of the seeds must be determined. This study was performed to determine the coefficients of apparent digestibility, digestible energy and nitrogen retention for rations containing various levels of ground sunflower seeds

    Mode identification of Pulsating White Dwarfs using the HST

    Full text link
    We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to the optical pulsation amplitude and determine the pulsation indices. We find that for essentially all observed pulsation modes, the amplitude rises to the ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do not find any pulsation mode visible only in the ultraviolet, nor any modes whose phase flips by 180 degrees; in the ultraviolet, as would be expected if high l pulsations were excited. We find one periodicity in the light curve of G185-32, at 141 s, which does not fit theoretical models for the change of amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200

    New full evolutionary sequences of H and He atmosphere massive white dwarf stars using MESA

    Get PDF
    We explore the evolution of hydrogen-rich and hydrogen-deficient white dwarf stars with masses between 1.012 and 1.307 Msun, and initial metallicity of Z=0.02. These sequences are the result of main sequence stars with masses between 8.8 and 11.8 Msun. The simulations were performed with MESA, starting at the zero-age main sequence, through thermally pulsing and mass-loss phases, ending at the white dwarfs cooling sequence. We present reliable chemical profiles for the whole mass range considered, covering the different expected central compositions, i.e. C/O, O/Ne and Ne/O/Mg, and its dependence with the stellar mass. In addition, we present detailed chemical profiles of hybrid C/O-O/Ne core white dwarfs, found in the mass range between 1.024 and 1.15 Msun. We present the initial-to-final mass relation, mass-radius relation, and cooling times considering the effects of atmosphere and core composition.Comment: 17 pages, 16 figures, 3 tables, accepted for publication in MNRAS. Cooling tracks available at ftp://cdsarc.u-strasbg.fr/pub/cats/J/MNRAS/480/154

    Theory of Structural Glasses and Supercooled Liquids

    Full text link
    We review the Random First Order Transition Theory of the glass transition, emphasizing the experimental tests of the theory. Many distinct phenomena are quantitatively predicted or explained by the theory, both above and below the glass transition temperature TgT_g. These include: the viscosity catastrophe and heat capacity jump at TgT_g, and their connection; the non-exponentiality of relaxations and their correlation with the fragility; dynamic heterogeneity in supercooled liquids owing to the mosaic structure; deviations from the Vogel-Fulcher law, connected with strings or fractral cooperative rearrangements; deviations from the Stokes-Einstein relation close to TgT_g; aging, and its correlation with fragility; the excess density of states at cryogenic temperatures due to two level tunneling systems and the Boson Peak.Comment: submitted to Ann. Rev. Phys. Che

    Discovery of an ultramassive pulsating white dwarf

    Get PDF
    We announce the discovery of the most massive pulsating hydrogen-atmosphere (DA) white dwarf (WD) ever discovered, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a 12,030 +/- 210 K WD with a log(g) = 9.08 +/- 0.06, which corresponds to a mass of 1.20 +/- 0.03 Msun. Stellar evolution models indicate that the progenitor of such a high-mass WD endured a stable carbon-burning phase, producing an oxygen-neon-core WD. The discovery of pulsations in GD 518 thus offers the first opportunity to probe the interior of a WD with a possible oxygen-neon core. Such a massive WD should also be significantly crystallized at this temperature. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425-595 s and amplitudes up to 0.7%, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, which exhibit non-radial g-mode pulsations driven by a hydrogen partial ionization zone. Successfully unraveling both the total mass and core composition of GD 518 provides a unique opportunity to investigate intermediate-mass stellar evolution, and can possibly place an upper limit to the mass of a carbon-oxygen-core WD, which in turn constrains SNe Ia progenitor systems.Comment: 5 pages, 3 figures, Astrophysical Journal Letters, 771, L2 (2013

    Prehistory of Transit Searches

    Full text link
    Nowadays the more powerful method to detect extrasolar planets is the transit method. We review the planet transits which were anticipated, searched, and the first ones which were observed all through history. Indeed transits of planets in front of their star were first investigated and studied in the solar system. The first observations of sunspots were sometimes mistaken for transits of unknown planets. The first scientific observation and study of a transit in the solar system was the observation of Mercury transit by Pierre Gassendi in 1631. Because observations of Venus transits could give a way to determine the distance Sun-Earth, transits of Venus were overwhelmingly observed. Some objects which actually do not exist were searched by their hypothetical transits on the Sun, as some examples a Venus satellite and an infra-mercurial planet. We evoke the possibly first use of the hypothesis of an exoplanet transit to explain some periodic variations of the luminosity of a star, namely the star Algol, during the eighteen century. Then we review the predictions of detection of exoplanets by their transits, those predictions being sometimes ancient, and made by astronomers as well as popular science writers. However, these very interesting predictions were never published in peer-reviewed journals specialized in astronomical discoveries and results. A possible transit of the planet beta Pic b was observed in 1981. Shall we see another transit expected for the same planet during 2018? Today, some studies of transits which are connected to hypothetical extraterrestrial civilisations are published in astronomical refereed journals. Some studies which would be classified not long ago as science fiction are now considered as scientific ones.Comment: Submiited to Handbook of Exoplanets (Springer

    An asteroseismic test of diffusion theory in white dwarfs

    Full text link
    The helium-atmosphere (DB) white dwarfs are commonly thought to be the descendants of the hotter PG1159 stars, which initially have uniform He/C/O atmospheres. In this evolutionary scenario, diffusion builds a pure He surface layer which gradually thickens as the star cools. In the temperature range of the pulsating DB white dwarfs (T_eff ~ 25,000 K) this transformation is still taking place, allowing asteroseismic tests of the theory. We have obtained dual-site observations of the pulsating DB star CBS114, to complement existing observations of the slightly cooler star GD358. We recover the 7 independent pulsation modes that were previously known, and we discover 4 new ones to provide additional constraints on the models. We perform objective global fitting of our updated double-layered envelope models to both sets of observations, leading to determinations of the envelope masses and pure He surface layers that qualitatively agree with the expectations of diffusion theory. These results provide new asteroseismic evidence supporting one of the central assumptions of spectral evolution theory, linking the DB white dwarfs to PG1159 stars.Comment: 7 pages, 3 figures, 3 tables, accepted for publication in A&

    A comparative analysis of the observed white dwarf cooling sequence from globular clusters

    Get PDF
    We report our study of features at the observed red end of the white dwarf cooling sequences for three Galactic globular clusters: NGC\,6397, 47\,Tucanae and M\,4. We use deep colour-magnitude diagrams constructed from archival Hubble Space Telescope (ACS) to systematically investigate the blue turn at faint magnitudes and the age determinations for each cluster. We find that the age difference between NGC\,6397 and 47\,Tuc is 1.980.26+0.44^{+0.44}_{-0.26}\,Gyr, consistent with the picture that metal-rich halo clusters were formed later than metal-poor halo clusters. We self-consistently include the effect of metallicity on the progenitor age and the initial-to-final mass relation. In contrast with previous investigations that invoked a single white dwarf mass for each cluster, the data shows a spread of white dwarf masses that better reproduce the shape and location of the blue turn. This effect alone, however, does not completely reproduce the observational data - the blue turn retains some mystery. In this context, we discuss several other potential problems in the models. These include possible partial mixing of H and He in the atmosphere of white dwarf stars, the lack of a good physical description of the collision-induced absorption process and uncertainties in the opacities at low temperatures. The latter are already known to be significant in the description of the cool main sequence. Additionally, we find that the present day local mass function of NGC\,6397 is consistent with a top-heavy type, while 47\,Tuc presents a bottom-heavy profile.Comment: Accepted for publication in MNRAS (16 pages, 19 figures

    On the nature of long-range contributions to pair interactions between charged colloids in two dimensions

    Full text link
    We perform a detailed analysis of solutions of the inverse problem applied to experimentally measured two-dimensional radial distribution functions for highly charged latex dispersions. The experiments are carried out at high colloidal densities and under low-salt conditions. At the highest studied densities, the extracted effective pair potentials contain long-range attractive part. At the same time, we find that for the best distribution functions available the range of stability of the solutions is limited by the nearest neighbour distance between the colloidal particles. Moreover, the measured pair distribution functions can be explained by purely repulsive pair potentials contained in the stable part of the solution.Comment: 6 pages, 5 figure
    corecore