736 research outputs found

    Entangled Mixed States and Local Purification

    Full text link
    Linden, Massar and Popescu have recently given an optimization argument to show that a single two-qubit Werner state, or any other mixture of the maximally entangled Bell states, cannot be purified by local operations and classical communications. We generalise their result and give a simple explanation. In particular, we show that no purification scheme using local operations and classical communications can produce a pure singlet from any mixed state of two spin-1/2 particles. More generally, no such scheme can produce a maximally entangled state of any pair of finite-dimensional systems from a generic mixed state. We also show that the Werner states belong to a large class of states whose fidelity cannot be increased by such a scheme.Comment: 3 pages, Latex with Revtex. Small clarifications and reference adde

    A tale of two galaxies: light and mass in NGC891 and NGC7814

    Get PDF
    The two edge-on galaxies NGC891 and NGC7814 are representative of two extreme morphologies: the former is disk-dominated while the latter is almost entirely bulge-dominated. It has been argued (van der Kruit 1983) that since the two galaxies, which are optically so different, have similar rotation curves their total mass distributions cannot be related in any way to the light distributions. This would lead to the conclusion that dark matter is the dominating component of the mass. We have derived new rotation curves from recent, high-sensitivity HI observations and have found that the shapes of the rotation curves are significantly different for the two galaxies. They indicate that in NGC7814 the mass is more concentrated to the centre as compared to NGC891. This reflects the distribution of light which is more centrally concentrated in NGC7814 than in NGC891. Mass and light do seem to be closely related. This is confirmed by the analysis of the rotation curves in mass components: solutions close to the maximum light (bulge + disk) do provide excellent fits. In NGC891 bulge and disk can explain the rotation curve without any need for dark matter out to ~15 kpc. In NGC7814 the bulge dominates in the inner parts; further out the rotation curve is well reproduced by a maximum disk but its M/L ratio is excessively high. A substantial dark matter contribution, closely coupled to the luminous component, seems, therefore, necessary.Comment: 10 pages, 9 figures, accepted for publication in A&

    Non-local Correlations are Generic in Infinite-Dimensional Bipartite Systems

    Full text link
    It was recently shown that the nonseparable density operators for a bipartite system are trace norm dense if either factor space has infinite dimension. We show here that non-local states -- i.e., states whose correlations cannot be reproduced by any local hidden variable model -- are also dense. Our constructions distinguish between the cases where both factor spaces are infinite-dimensional, where we show that states violating the CHSH inequality are dense, and the case where only one factor space is infinite-dimensional, where we identify open neighborhoods of nonseparable states that do not violate the CHSH inequality but show that states with a subtler form of non-locality (often called "hidden" non-locality) remain dense.Comment: 8 pages, RevTe

    Mixed State Entanglement: Manipulating Polarisation-Entangled Photons

    Get PDF
    There has been much discussion recently regarding entanglement transformations in terms of local filtering operations and whether the optimal entanglement for an arbitrary two-qubit state could be realised. We introduce an experimentally realisable scheme for manipulating the entanglement of an arbitrary state of two polarisation entangled qubits. This scheme is then used to provide some perspective to the mathematical concepts inherent in this field with respect to a laboratory environment. Specifically, we look at how to extract enhanced entanglement from systems with a fixed rank and in the case where the rank of the density operator for the state can be reduced, show how the state can be made arbitrarily close to a maximally entangled pure state. In this context we also discuss bounds on entanglement in mixed states.Comment: 12 pages, 10 figure

    Distillability and partial transposition in bipartite systems

    Get PDF
    We study the distillability of a certain class of bipartite density operators which can be obtained via depolarization starting from an arbitrary one. Our results suggest that non-positivity of the partial transpose of a density operator is not a sufficient condition for distillability, when the dimension of both subsystems is higher than two.Comment: 8 pages, 1 figur

    Local environment can enhance fidelity of quantum teleportation

    Get PDF
    We show how an interaction with the environment can enhance fidelity of quantum teleportation. To this end, we present examples of states which cannot be made useful for teleportation by any local unitary transformations; nevertheless, after being subjected to a dissipative interaction with the local environment, the states allow for teleportation with genuinely quantum fidelity. The surprising fact here is that the necessary interaction does not require any intelligent action from the parties sharing the states. In passing, we produce some general results regarding optimization of teleportation fidelity by local action. We show that bistochastic processes cannot improve fidelity of two-qubit states. We also show that in order to have their fidelity improvable by a local process, the bipartite states must violate the so-called reduction criterion of separability.Comment: 9 pages, Revte

    OREST: the online resource for EST analysis

    Get PDF
    The generation of expressed sequence tag (EST) libraries offers an affordable approach to investigate organisms, if no genome sequence is available. OREST (http://mips.gsf.de/genre/proj/orest/index.html) is a server-based EST analysis pipeline, which allows the rapid analysis of large amounts of ESTs or cDNAs from mammalia and fungi. In order to assign the ESTs to genes or proteins OREST maps DNA sequences to reference datasets of gene products and in a second step to complete genome sequences. Mapping against genome sequences recovers additional 13% of EST data, which otherwise would escape further analysis. To enable functional analysis of the datasets, ESTs are functionally annotated using the hierarchical FunCat annotation scheme as well as GO annotation terms. OREST also allows to predict the association of gene products and diseases by Morbid Map (OMIM) classification. A statistical analysis of the results of the dataset is possible with the included PROMPT software, which provides information about enrichment and depletion of functional and disease annotation terms. OREST was successfully applied for the identification and functional characterization of more than 3000 EST sequences of the common marmoset monkey (Callithrix jacchus) as part of an international collaboration

    Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope using Hubble Space Telescope Flux Standards

    Get PDF
    The absolute flux calibration of the James Webb Space Telescope will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf (WD) stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3, 1.9, 2.0, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al. (2005), i.e. in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the SEDs of our standard stars. The independent IRAC 8 micron band-4 fluxes of Rieke et al. (2008) are about 1.5 +/- 2% higher than those of Reach et al. and are also in agreement with our 8 micron result.Comment: 16 pages, 6 figure

    DNA-bridging by an archaeal histone variant via a unique tetramerisation interface

    Get PDF
    In eukaryotes, histone paralogues form obligate heterodimers such as H3/H4 and H2A/H2B that assemble into octameric nucleosome particles. Archaeal histones are dimeric and assemble on DNA into 'hypernucleosome' particles of varying sizes with each dimer wrapping 30 bp of DNA. These are composed of canonical and variant histone paralogues, but the function of these variants is poorly understood. Here, we characterise the structure and function of the histone paralogue MJ1647 from Methanocaldococcus jannaschii that has a unique C-terminal extension enabling homotetramerisation. The 1.9 Å X-ray structure of a dimeric MJ1647 species, structural modelling of the tetramer, and site-directed mutagenesis reveal that the C-terminal tetramerization module consists of two alpha helices in a handshake arrangement. Unlike canonical histones, MJ1647 tetramers can bridge two DNA molecules in vitro. Using single-molecule tethered particle motion and DNA binding assays, we show that MJ1647 tetramers bind ~60 bp DNA and compact DNA in a highly cooperative manner. We furthermore show that MJ1647 effectively competes with the transcription machinery to block access to the promoter in vitro. To the best of our knowledge, MJ1647 is the first histone shown to have DNA bridging properties, which has important implications for genome structure and gene expression in archaea

    Formation and Evolution of Dwarf Elliptical Galaxies - II. Spatially resolved star-formation histories

    Full text link
    We present optical VLT spectroscopy of 16 dwarf elliptical galaxies (or dEs) comparable in mass to NGC 205, and belonging to the Fornax cluster and to nearby groups of galaxies. Using ULySS and STECKMAP, we derive radial profiles of the SSP-equivalent ages, metallicities and star-formation histories. The old stellar population of the dEs, which dominates their mass, is likely coeval with that of massive ellipticals or bulges, but the star formation efficiency is lower. Important intermediate age (1-5 Gyr) populations, and frequently tails of star formation until recent times are detected. These histories are reminiscent of their lower mass dSph counterparts of the Local Group. Most galaxies (10/16) show significant metallicity gradients, with metallicity declining by 0.5 dex over one half-light radius on average. These gradients are already present in the old population. The flattened (or discy), rotating objects (6/16) have flat metallicity profiles. This may be consistent with a distinct origin for these galaxies or it may be due to their geometry. The central SSP-equivalent age varies between 1 and 6 Gyr, with the age slowly increasing with radius in the vast majority of objects. The group and cluster galaxies have similar radial gradients and star-formation histories. The strong and old metallicity gradients place important constraints on the possible formation scenarios of dEs. Numerical simulations of the formation of spherical low-mass galaxies reproduce these gradients, but they require a longer time for them to build up. A gentle depletion of the gas, by ram-pressure stripping or starvation, could drive the gas-rich, star-forming progenitors to the present dEs.Comment: 21 pages, 9 figures. Accepted in MNRA
    • 

    corecore