381 research outputs found
Proximity-Coupled Ti/TiN Multilayers for use in Kinetic Inductance Detectors
We apply the superconducting proximity effect in TiN/Ti multi-layer films to
tune the critical temperature, Tc, to within 10 mK with high uniformity (less
than 15 mK spread) across a 75 mm wafer. Reproducible Tc's are obtained from
0.8 - 2.5 K. These films had high resistivities, > 100 uOhm-cm and internal
quality factors for resonators in the GHz range on the order of 100k and
higher. Both trilayers of TiN/Ti/TiN and thicker superlattice films were
prepared, demonstrating a highly controlled process for films over a wide
thickness range. Detectors were fabricated and showed single photon resolution
at 1550 nm. The high uniformity and controllability coupled with the high
quality factor, kinetic inductance, and inertness of TiN make these films ideal
for use in frequency multiplexed kinetic inductance detectors and other
potential applications such as nanowire detectors, transition edge sensors and
associated quantum information applications
Corrugated Silicon Platelet Feed Horn Array for CMB Polarimetry at 150 GHz
Next generation cosmic microwave background (CMB) polarization anisotropy
measurements will feature focal plane arrays with more than 600 millimeter-wave
detectors. We make use of high-resolution photolithography and wafer-scale etch
tools to build planar arrays of corrugated platelet feeds in silicon with
highly symmetric beams, low cross-polarization and low side lobes. A compact
Au-plated corrugated Si feed designed for 150 GHz operation exhibited
performance equivalent to that of electroformed feeds: ~-0.2 dB insertion loss,
<-20 dB return loss from 120 GHz to 170 GHz, <-25 dB side lobes and <-23 dB
cross-polarization. We are currently fabricating a 50 mm diameter array with 84
horns consisting of 33 Si platelets as a prototype for the SPTpol and ACTpol
telescopes. Our fabrication facilities permit arrays up to 150 mm in diameter.Comment: 12 pages; SPIE proceedings for Millimeter, Submillimeter, and
Far-Infrared Detectors and Instrumentation for Astronomy V (Conference 7741,
June 2010, San Diego, CA, USA
Development of Space-Flight Compatible Room-Temperature Electronics for the Lynx X-Ray Microcalorimeter
We are studying the development of space-flight compatible room-temperature electronics for the Lynx x-ray microcalorimeter (LXM) of the Lynx mission. The baseline readout technique for the LXM is microwave SQUID multiplexing. The key modules at room temperature are the RF electronics module and the digital electronics and event processor (DEEP). The RF module functions as frequency converters and mainly consists of local oscillators and I/Q mixers. The DEEP performs demultiplexing and event processing, and mainly consists of field-programmable gate arrays, ADCs, and DACs. We designed the RF electronics and DEEP to be flight ready, and estimated the power, size, and mass of those modules. There are two boxes each for the RF electronics and DEEP for segmentation, and the sizes of the boxes are 13 in: 13 in: 9 in: for the RF electronics and 15.5 in: 11.5 in: 9.5 in: for the DEEP. The estimated masses are 25.1 kgbox for the RF electronics box and 24.1 kgbox for the DEEP box. The maximum operating power for the RF electronics is 141 W or 70.5 Wbox, and for the DEEP box is 615 W or 308 Wbox. The overall power for those modules is 756 W. We describe the detail of the designs as well as the approaches to the estimation of resources, sizes, masses, and powers
Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors
We demonstrate photon-noise limited performance at sub-millimeter wavelengths
in feedhorn-coupled, microwave kinetic inductance detectors (MKIDs) made of a
TiN/Ti/TiN trilayer superconducting film, tuned to have a transition
temperature of 1.4~K. Micro-machining of the silicon-on-insulator wafer
backside creates a quarter-wavelength backshort optimized for efficient
coupling at 250~\micron. Using frequency read out and when viewing a variable
temperature blackbody source, we measure device noise consistent with photon
noise when the incident optical power is ~0.5~pW, corresponding to noise
equivalent powers ~3 W/. This
sensitivity makes these devices suitable for broadband photometric applications
at these wavelengths
Silicon nitride micromesh bolometer arrays for SPIRE
We are developing arrays of bolometers based on silicon nitride micromesh absorbers for the Spectral & Photometric Imaging Receiver (SPIRE) on the Far Infra-Red and Submillimeter Space Telescope (FIRST). The bolometers are coupled to a close-packed array of 1 f(lambda) feedhorns which views the primary mirror through a cooled aperture stop. Feedhorn-coupled bolometers minimize the detector area and throughput and have good optical efficiency. A 1 f(lambda) feedhorn array provides, higher mapping speed than a 2 f(lambda) feedhorn array and reduces the number of jitters required to produce a fully sampled map, but at the cost of more detectors. Individual silicon nitride micromesh bolometers are already able to meet the performance requirements of SPIRE. In parallel we are developing transition-edge detectors read out by SQUID current amplifier. The relatively large cooling power available at 300 mK enables the array to be coupled to a cold SQUID multiplexer, creating a monolithic fully multiplexed array and making large format arrays possible for SPIRE
SuperCDMS Cold Hardware Design
We discuss the current design of the cold hardware and cold electronics to be used in the upcoming SuperCDMS Soudan deployment. Engineering challenges associated with such concerns as thermal isolation, microphonics, radiopurity, and power dissipation are discussed, along with identifying the design changes necessary for SuperCDMS SNOLAB. The Cryogenic Dark Matter Search (CDMS) employs ultrapure 1-inch thick, 3-inch diameter germanium crystals operating below 50 mK in a dilution cryostat. These detectors give an ionization and phonon signal, which gives us rejection capabilities regarding background events versus dark matter signals.United States. Dept. of Energy (Grant DEAC02-76SF00515)United States. Dept. of Energy (Contract DC-AC02-07CH11359)National Science Foundation (U.S.) (Awards 0705052, 0902182, 1004714 and 0802575
The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev-Zel'dovich effect
We present a first measurement of the stellar mass component of galaxy
clusters selected via the Sunyaev-Zel'dovich (SZ) effect, using 3.6 um and 4.5
um photometry from the Spitzer Space Telescope. Our sample consists of 14
clusters detected by the Atacama Cosmology Telescope (ACT), which span the
redshift range 0.27 < z < 1.07 (median z = 0.50), and have dynamical mass
measurements, accurate to about 30 per cent, with median M500 = 6.9 x 10^{14}
MSun. We measure the 3.6 um and 4.5 um galaxy luminosity functions, finding the
characteristic magnitude (m*) and faint-end slope (alpha) to be similar to
those for IR-selected cluster samples. We perform the first measurements of the
scaling of SZ-observables (Y500 and y0) with both brightest cluster galaxy
(BCG) stellar mass and total cluster stellar mass (M500star). We find a
significant correlation between BCG stellar mass and Y500 (E(z)^{-2/3} DA^2
Y500 ~ M*^{1.2 +/- 0.6}), although we are not able to obtain a strong
constraint on the slope of the relation due to the small sample size.
Additionally, we obtain E(z)^{-2/3} DA^2 Y500 ~ M500star^{1.0 +/- 0.6} for the
scaling with total stellar mass. The mass fraction in stars spans the range
0.006-0.034, with the second ranked cluster in terms of dynamical mass (ACT-CL
J0237-4939) having an unusually low total stellar mass and the lowest stellar
mass fraction. For the five clusters with gas mass measurements available in
the literature, we see no evidence for a shortfall of baryons relative to the
cosmic mean value.Comment: Accepted for publication in MNRAS; 12 pages, 10 figure
The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data
[Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new
discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the
Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial
equator. A subsample of 48 clusters within the 270 square degree region
overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14
Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters,
the sample is studied further through a "Profile Based Amplitude Analysis"
using a single filter at a fixed \theta_500 = 5.9' angular scale. This new
approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the
relationship between the cluster characteristic size (R_500) and the integrated
Compton parameter (Y_500). The UPP scalings are found to be nearly identical to
an adiabatic model, while a model incorporating non-thermal pressure better
matches dynamical mass measurements and masses from the South Pole Telescope. A
high signal to noise ratio subsample of 15 ACT clusters is used to obtain
cosmological constraints. We first confirm that constraints from SZ data are
limited by uncertainty in the scaling relation parameters rather than sample
size or measurement uncertainty. We next add in seven clusters from the ACT
Southern survey, including their dynamical mass measurements based on galaxy
velocity dispersions. In combination with WMAP7 these data simultaneously
constrain the scaling relation and cosmological parameters, yielding \sigma_8 =
0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include
marginalization over a 15% bias in dynamical mass relative to the true halo
mass. In an extension to LCDM that incorporates non-zero neutrino mass density,
we combine our data with WMAP7+BAO+Hubble constant measurements to constrain
\Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle
Physic
- …
