4,544 research outputs found

    Out of Ferguson: Misdemeanors, Municipal Courts, Tax Distribution and Constitutional Limitations

    Get PDF
    The matter of police and municipal courts as revenue producers became increasingly prominent following Michael Brown’s death from a police shooting. This article considers the use of misdemeanors, especially traffic violations, for the purpose of collecting substantial portions of the annual operating budgets in municipalities in St. Louis County, Missouri. The article argues that the revenue raising function of traffic offenses has displaced their public safety and traffic regulation functions. The change in function from public safety to revenue suggests that the governing laws are no longer valid as exercise of policing power but must be reenacted under the taxing power in order to remain valid. Constitutional tax limitations in Missouri, however, prohibit the increase of existing or enactment of new taxes without an affirmative vote of the electorate. Municipalities have circumvented the constitutional taxing limitations by using laws enacted under policing powers in violation of the constitution. The police and the municipal courts enforcing traffic laws have produced a racially discriminatory and regressive local tax system that violates the tax limitations of the Missouri constitution

    Distance Dependent Offsets between Parallaxes for Nearby Stars and Gaia DR1 Parallaxes

    Get PDF
    We use 612 single stars with previously published trigonometric parallaxes placing them within 25 pc to evaluate parallaxes released in Gaia's first data release (DR1). We find that the Gaia parallaxes are, on average, 0.24±0.020.24 \pm 0.02 mas smaller than the weighted mean trigonometric parallax values for these stars in the solar neighborhood. We also find that the offset changes with distance out to 100 pc, in the sense that the closer the star, the larger the offset. We find no systematic trends in the parallax offsets with stellar VV magnitude, V−KV-K color, or proper motion. We do find that the offset is roughly twice as large for stars south of the ecliptic compared to those that are north.Comment: 14 pages, 2 figures, 3 tables, accepted for publication in ApJ Letter. The table 1 is available in its entirety in a machine-readable form in the online journa

    tert-Butyl 6-methyl-2-oxo-4-[4-(trifluoro­meth­oxy)anilino]cyclo­hex-3-ene-1-carboxyl­ate

    Get PDF
    In the title compound, C19H22F3NO4, the dihedral angle between the benzene ring and the conjugated part of the enaminone ring is 42.5 (1)°. The ester substituent makes a dihedral angle of 81.3 (2)° with this latter moiety. The crystal structure is held together by strong N—H⋯O and weak C—H⋯O inter­molecular inter­actions. The enaminone ring is disordered over two orientations with relative occupancies of 0.794 (4) and 0.206 (4)

    Hybrid laser for optical communications, and transmitter, system, and method

    Full text link
    In the interest of ease of manufacture, hybrid lasers of distributed-Bragg-reflector type are preferred for use as light sources in optical communications. Such lasers are made to operate away from mode instabilities by adjusting a laser parameter such as, e.g., laser temperature, thereby assuring highly error-free transmission. Alternatively, by suitable design of the Bragg reflector it is possible to render mode instability of negligible influence on error rate.Published versio

    A neuronal-specific differentiation protein that directly modulates retinoid receptor transcriptional activation

    Get PDF
    BACKGROUND: The specificity of a nuclear receptor's ability to modulate gene expression resides in its ability to bind a specific lipophilic ligand, associate with specific dimerization partners and bind specific DNA sequences in the promoter regions of genes. This sequence of events appears to be the basis for targeting an additional regulatory complex composed of a variety of protein and RNA components that deliver signals for facilitation or inhibition of the RNA polymerase complex. Characterization of the tissue and cell-specific components of these coregulatory complexes appear to be integral to our understanding of nuclear receptor regulation of transcription. RESULTS: A novel yeast screen sensitive to retinoid-X receptor (RXR) transcriptional activation resulted in the isolation of the rat homologue of the mouse NPDC-1 gene. NPDC-1 has been shown to be involved in the control of neural cell proliferation and differentiation, possibly through interactions with the cell cycle promoting transcription factor E2F-1. Although the amino acid sequence of NPDC-1 is highly conserved between mouse, rat and human homologues, their tissue specific expression was seen to vary. A potential for direct protein:protein interaction between NPDC-1, RXR and retinoic acid receptor beta (RARβ) was observed in vitro and NPDC-1 facilitated RXR homodimer and RAR-RXR heterodimer DNA binding in vitro. Expression of NPDC-1 was also observed to repress transcription mediated by retinoid receptors as well as by several other nuclear receptor family members, although not in a universal manner. CONCLUSIONS: These results suggest that NPDC-1, through direct interaction with retinoid receptors, functions to enhance the transcription complex formation and DNA binding function of retinoid receptors, but ultimately repress retinoid receptor-mediated gene expression. As with NPDC-1, retinoids and their receptors have been implicated in brain development and these data provide a point of convergence for NPDC-1 and retinoid mediation of neuronal differentiation

    Inter-annual species-level variations in an abyssal polychaete assemblage (Sta. M, NE Pacific, 4000 m)

    Get PDF
    Understanding the dynamics of abyssal community structure and function has become increasingly important as deep-sea resource exploitation and climate change pressures are expected to ramp up. This time-series study investigates macrofaunal polychaete dynamics at a station in the North East Pacific (Sta. M; 35˚ N 123˚ W, 4000 m, 1991-2011). Infaunal polychaete species were identified and their proxy biomass and proxy energy use rate estimated. The assemblage comprised 167 species, having a composition consistent with other abyssal areas globally. Significant changes in univariate and multivariate parameters (rank abundance distribution, Simpson’s diversity index, and species and functional group composition) were detected across 1991-2011. However, no change in biomass or energy use rate was apparent through the time-series. The largest changes in the polychaete assemblage coincided with both an increase in sinking particulate organic carbon flux to the seafloor in 2007, and a 40 km relocation of the sampling location to a site 100 m shallower, preventing a conclusive assessment of which might drive the observed variation. Analyses prior to the change of sampling location showed that the polychaete assemblage composition dynamics were primary driven by food supply variation. Changes in several species were also lagged to changes in POC flux by 4 to 10 months. The polychaete fauna exhibited a significant positive relationship between total density and total energy use rate, suggesting population-level tracking of a common resource (e.g. POC flux food supply). Neither compensatory nor energetic zero-sum dynamics were detected among the polychaete assemblage, but the results suggest that the latter occur in the macrofaunal community as a whole. The results do indicate (a) potential control of species composition, and the density of individual key species, by food supply, when the time-series prior to the sampling location was analysed separately, and (b) generally sensitive detection of environmental change by species-level analysis of the abyssal polychaete assemblage

    Synergistic effects of targeted PI3K signaling inhibition and chemotherapy in liposarcoma.

    Get PDF
    While liposarcoma is the second most common soft tissue malignant tumor, the molecular pathogenesis in this malignancy is poorly understood. Our goal was therefore to expand the understanding of molecular mechanisms that drive liposarcoma and identify therapeutically-susceptible genetic alterations. We studied a cohort of high-grade liposarcomas and benign lipomas across multiple disease sites, as well as two liposarcoma cell lines, using multiplexed mutational analysis. Nucleic acids extracted from diagnostic patient tissue were simultaneously interrogated for 150 common mutations across 15 essential cancer genes using a clinically-validated platform for cancer genotyping. Western blot analysis was implemented to detect activation of downstream pathways. Liposarcoma cell lines were used to determine the effects of PI3K targeted drug treatment with or without chemotherapy. We identified mutations in the PIK3CA gene in 4 of 18 human liposarcoma patients (22%). No PIK3CA mutations were identified in benign lipomas. Western blot analysis confirmed downstream activation of AKT in both PIK3CA mutant and non-mutant liposarcoma samples. PI-103, a dual PI3K/mTOR inhibitor, effectively inhibited the activation of the PI3K/AKT in liposarcoma cell lines and induced apoptosis. Importantly, combination with PI-103 treatment strongly synergized the growth-inhibitory effects of the chemotherapy drugs doxorubicin and cisplatin in liposarcoma cells. Taken together, these findings suggest that activation of the PI3K/AKT pathway is an important cancer mechanism in liposarcoma. Targeting the PI3K/AKT/pathway with small molecule inhibitors in combination with chemotherapy could be exploited as a novel strategy in the treatment of liposarcoma

    High-density integration of ultrabright OLEDs on a miniaturized needle-shaped CMOS backplane

    Get PDF
    This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Contract N6600117C4012, by the National Institutes of Health under Grant U01NS090596, and by the Leverhulme Trust (RPG-2017-231). C.K.M. acknowledges funding from the European Commission through a Marie Skłodowska Curie individual fellowship (101029807). M.C.G. acknowledges funding from the Alexander von Humboldt Stiftung (Humboldt-Professorship). We thank Aaron Naden for the FIB/STEM measurements (Engineering and Physical Sciences Research Council under grant numbers EP/L017008/1, EP/R023751/1 and EP/T019298/1).Direct deposition of organic light-emitting diodes (OLEDs) on silicon-based complementary metal–oxide–semiconductor (CMOS) chips has enabled self-emissive microdisplays with high resolution and fill-factor. Emerging applications of OLEDs in augmented and virtual reality (AR/VR) displays and in biomedical applications, e.g., as brain implants for cell-specific light delivery in optogenetics, require light intensities orders of magnitude above those found in traditional displays. Further requirements often include a microscopic device footprint, a specific shape and ultrastable passivation, e.g., to ensure biocompatibility and minimal invasiveness of OLED-based implants. In this work, up to 1024 ultrabright, microscopic OLEDs are deposited directly on needle-shaped CMOS chips. Transmission electron microscopy and energy-dispersive X-ray spectroscopy are performed on the foundry-provided aluminum contact pads of the CMOS chips to guide a systematic optimization of the contacts. Plasma treatment and implementation of silver interlayers lead to ohmic contact conditions and thus facilitate direct vacuum deposition of orange- and blue-emitting OLED stacks leading to micrometer-sized pixels on the chips. The electronics in each needle allow each pixel to switch individually. The OLED pixels generate a mean optical power density of 0.25 mW mm−2, corresponding to >40 000 cd m−2, well above the requirement for daylight AR applications and optogenetic single-unit activation in the brain.Publisher PDFPeer reviewe
    • …
    corecore