256 research outputs found

    Self-administered transcranial direct current stimulation treatment of knee osteoarthritis alters pain-related fNIRS connectivity networks

    Get PDF
    Significance: Knee osteoarthritis (OA) is a disease that causes chronic pain in the elderly population. Currently, OA is mainly treated pharmacologically with analgesics, although research has shown that neuromodulation via transcranial direct current stimulation (tDCS) may be beneficial in reducing pain in clinical settings. However, no studies have reported the effects of home-based self-administered tDCS on functional brain networks in older adults with knee OA.Aim: We used functional near-infrared spectroscopy (fNIRS) to investigate the functional connectivity effects of tDCS on underlying pain processing mechanisms at the central nervous level in older adults with knee OA.Approach: Pain-related brain connectivity networks were extracted using fNIRS at baseline and for three consecutive weeks of treatment from 120 subjects randomly assigned to two groups undergoing active tDCS and sham tDCS.Results: Our results showed that the tDCS intervention significantly modulated pain-related connectivity correlation only in the group receiving active treatment. We also found that only the active treatment group showed a significantly reduced number and strength of functional connections evoked during nociception in the prefrontal cortex, primary motor (M1), and primary somatosensory (S1) cortices. To our knowledge, this is the first study in which the effect of tDCS on pain-related connectivity networks is investigated using fNIRS.Conclusions: fNIRS-based functional connectivity can be effectively used to investigate neural circuits of pain at the cortical level in association with nonpharmacological, self-administered tDCS treatment

    Self-Administered Transcranial Direct Current Stimulation Treatment of Knee Osteoarthritis Alters Pain-Related fNIRS Connectivity Networks

    Get PDF
    SIGNIFICANCE: Knee osteoarthritis (OA) is a disease that causes chronic pain in the elderly population. Currently, OA is mainly treated pharmacologically with analgesics, although research has shown that neuromodulation via transcranial direct current stimulation (tDCS) may be beneficial in reducing pain in clinical settings. However, no studies have reported the effects of home-based self-administered tDCS on functional brain networks in older adults with knee OA. AIM: We used functional near-infrared spectroscopy (fNIRS) to investigate the functional connectivity effects of tDCS on underlying pain processing mechanisms at the central nervous level in older adults with knee OA. APPROACH: Pain-related brain connectivity networks were extracted using fNIRS at baseline and for three consecutive weeks of treatment from 120 subjects randomly assigned to two groups undergoing active tDCS and sham tDCS. RESULTS: Our results showed that the tDCS intervention significantly modulated pain-related connectivity correlation only in the group receiving active treatment. We also found that only the active treatment group showed a significantly reduced number and strength of functional connections evoked during nociception in the prefrontal cortex, primary motor (M1), and primary somatosensory (S1) cortices. To our knowledge, this is the first study in which the effect of tDCS on pain-related connectivity networks is investigated using fNIRS. CONCLUSIONS: fNIRS-based functional connectivity can be effectively used to investigate neural circuits of pain at the cortical level in association with nonpharmacological, self-administered tDCS treatment

    Self-administered transcranial direct current stimulation treatment of knee osteoarthritis alters pain-related fNIRS connectivity networks

    Get PDF
    Epub 2023 Mar 31Significance: Knee osteoarthritis (OA) is a disease that causes chronic pain in the elderly population. Currently, OA is mainly treated pharmacologically with analgesics, although research has shown that neuromodulation via transcranial direct current stimulation (tDCS) may be beneficial in reducing pain in clinical settings. However, no studies have reported the effects of home-based self-administered tDCS on functional brain networks in older adults with knee OA. Aim: We used functional near-infrared spectroscopy (fNIRS) to investigate the functional connectivity effects of tDCS on underlying pain processing mechanisms at the central nervous level in older adults with knee OA. Approach: Pain-related brain connectivity networks were extracted using fNIRS at baseline and for three consecutive weeks of treatment from 120 subjects randomly assigned to two groups undergoing active tDCS and sham tDCS. Results: Our results showed that the tDCS intervention significantly modulated pain-related connectivity correlation only in the group receiving active treatment. We also found that only the active treatment group showed a significantly reduced number and strength of functional connections evoked during nociception in the prefrontal cortex, primary motor (M1), and primary somatosensory (S1) cortices. To our knowledge, this is the first study in which the effect of tDCS on pain-related connectivity networks is investigated using fNIRS. Conclusions: fNIRS-based functional connectivity can be effectively used to investigate neural circuits of pain at the cortical level in association with nonpharmacological, self-administered tDCS treatment.S.M.H. and L.P. would like to acknowledge the support of the National Science Foundation (Grant Nos. CNS 1650536 and 2137255) and I/UCRC for Building Reliable Advances and Innovation in Neurotechnology. LP also acknowledges the U.S. Fulbright Scholar Program and the Fulbright Spain Commission for sponsoring his stay at the Basque Center on Cognition, Brain and Language. The research reported in this publication was supported by the National Institute of Nursing Research of the National Institutes of Health (Award No. R15NR018050)

    Infrared High-Resolution Spectroscopy of Post-AGB Circumstellar Disks. I. HR 4049 - The Winnowing Flow Observed?

    Get PDF
    High-resolution infrared spectroscopy in the 2.3-4.6 micron region is reported for the peculiar A supergiant, single-lined spectroscopic binary HR 4049. Lines from the CO fundamental and first overtone, OH fundamental, and several H2O vibration-rotation transitions have been observed in the near-infrared spectrum. The spectrum of HR 4049 appears principally in emission through the 3 and 4.6 micron region and in absorption in the 2 micron region. The 4.6 micron spectrum shows a rich 'forest' of emission lines. All the spectral lines observed in the 2.3-4.6 micron spectrum are shown to be circumbinary in origin. The presence of OH and H2O lines confirm the oxygen-rich nature of the circumbinary gas which is in contrast to the previously detected carbon-rich material. The emission and absorption line profiles show that the circumbinary gas is located in a thin, rotating layer near the dust disk. The properties of the dust and gas circumbinary disk and the spectroscopic orbit yield masses for the individual stars, M_AI~0.58 Msolar and M_MV~0.34 Msolar. Gas in the disk also has an outward flow with a velocity of \gtrsim 1 km/s. The severe depletion of refractory elements but near-solar abundances of volatile elements observed in HR 4049 results from abundance winnowing. The separation of the volatiles from the grains in the disk and the subsequent accretion by the star are discussed. Contrary to prior reports, the HR 4049 carbon and oxygen isotopic abundances are typical AGB values: 12C/13C=6^{+9}_{-4} and 16O/17O>200.Comment: 42 pages, 14 figures, Accepted by Ap

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    African-American inflammatory bowel disease in a Southern U.S. health center

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory Bowel Diseases (IBD) remain significant health problems in the US and worldwide. IBD is most often associated with eastern European ancestry, and is less frequently reported in other populations of African origin e.g. African Americans ('AAs'). Whether AAs represent an important population with IBD in the US remains unclear since few studies have investigated IBD in communities with a majority representation of AA patients. The Louisiana State University Health Sciences Center in Shreveport (LSUHSC-S) is a tertiary care medical center, with a patient base composed of 58% AA and 39% Caucasian (W), ideal for evaluating racial (AA vs. W) as well and gender (M vs. F) influences on IBD.</p> <p>Methods</p> <p>In this retrospective study, we evaluated 951 visits to LSUHSC-S for IBD (between 2000 to 2008) using non-identified patient information based on ICD-9 medical record coding (Crohn's disease 'CD'-555.0- 555.9 and ulcerative colitis 'UC'-556.0-556.9).</p> <p>Results</p> <p>Overall, there were more cases of CD seen than UC. UC and CD affected similar ratios of AA and Caucasian males (M) and females (F) with a rank order of WF > WM > AAF > AAM. Interestingly, in CD, we found that annual visits per person was the highest in AA M (10.7 ± 1.7); significantly higher (* -p < 0.05) than in WM (6.3 ± 1.0). Further, in CD, the female to male (F: M) ratio in AA was significantly higher (*- p < 0.05) (1.9 ± 0.2) than in Caucasians (F:M = 1.3 ± 0.1) suggesting a female dominance in AACD; no differences were seen in UC F: M ratios.</p> <p>Conclusion</p> <p>Although Caucasians still represent the greatest fraction of IBD (~64%), AAs with IBD made up >1/3 (36.4%) of annual IBD cases from 2000-2008 at LSUHSC-S. Further studies on genetic and environments risks for IBD risk in AAs are needed to understand differences in presentation and progression in AAs and other 'non-traditional' populations.</p

    Quantitative In Vivo Magnetic Resonance Spectroscopy Using Synthetic Signal Injection

    Get PDF
    Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment

    Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease

    Get PDF
    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis of published GWA studies. We propose that dysregulation of monocyte adaptation to the environment of the gastrointestinal mucosa is the key process leading to inflammatory bowel disease

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore