30 research outputs found
Combinatorial Boundary Tracking of a 3D Lattice Point Set
Boundary tracking and surface generation are ones of main topological topics for three-dimensional digital image analysis. However, there is no adequate theory to make relations between these different topological properties in a completely discrete way. In this paper, we present a new boundary tracking algorithm which gives not only a set of border points but also the surface structures by using the concepts of combinatorial/algebraic topologies. We also show that our boundary becomes a triangulation of border points (in the sense of general topology), that is, we clarify relations between border points and their surface structures
Hybrid ubiquinone: novel inhibitor of mitochondrial complex I
AbstractWe synthesized novel ubiquinone analogs by hybridizing the natural ubiquinone ring (2,3-dimethoxy-5-methyl-1,4-benzoquinone) and hydrophobic phenoxybenzamide unit, and named them hybrid ubiquinones (HUs). The HUs worked as electron transfer substrates with bovine heart mitochondrial succinate–ubiquinone oxidoreductase (complex II) and ubiquinol–cytochrome c oxidoreductase (complex III), but not with NADH–ubiquinone oxidoreductase (complex I). With complex I, they acted as inhibitors in a noncompetitive manner against exogenous short-chain ubiquinones irrespective of the presence of the natural ubiquinone ring. Elongation of the distance between the ubiquinone ring and the phenoxybenzamide unit did not recover the electron accepting activity. The structure/activity study showed that high structural specificity of the phenoxybenzamide moiety is required to act as a potent inhibitor of complex I. These findings indicate that binding of the HUs to complex I is mainly decided by some specific interaction of the phenoxybenzamide moiety with the enzyme. It is of interest that an analogous bulky and hydrophobic substructure can be commonly found in recently registered synthetic pesticides the action site of which is mitochondrial complex I
Ion cyclotron resonance heating system in the RT-1 magnetospheric plasma
We have developed an ion cyclotron resonance frequency (ICRF) heating system for the Ring Trap 1 (RT-1) magnetospheric device. We excite slow waves from the polar region of the dipole magnetic field. The target helium plasma is produced by electron cyclotron heating. The electrons comprise high-temperature (>10 keV) and low-temperature (<100 eV) components with both typically exhibiting densities of the same order of magnitude. The ICRF heating causes an increase in the ion temperatures and toroidal flow velocities in the core plasma region. We observe appreciable temperature differences between the different ion species (main He+ and impurity C2+), suggesting a strong influence of the charge-exchange loss, which caused the bulk ions to remain relatively cold (~20 eV) compared to the impurity ions (~40 eV). By developing an electro-optical measurement system, we have measured the local wave electric field in the plasma
Discrete Polyhedrization of a Lattice Point Set
International audienc
A mathematical model for the recovery of human and economic activities in disaster regions
summary:In this paper a model for the recovery of human and economic activities in a region, which underwent a serious disaster, is proposed. The model treats the case that the disaster region has an industrial collaboration with a non-disaster region in the production system and, especially, depends upon each other in technological development. The economic growth model is based on the classical theory of R. M. Solow (1956), and the full model is described as a nonlinear system of ordinary differential equations
Combinatorial boundary of a 3D lattice point set
International audienceBoundary extraction and surface generation are important topological topics for three-dimensional digital image analysis. However, there is no adequate theory to establish relations between these different topological procedures in a completely discrete way. In this paper, we present a new boundary extraction algorithm which gives not only a set of border points but also a polyhedral surface whose vertices are border points by using the concepts of combinatorial/algebraic topologies. We show that our boundary can be considered to be a triangulation or polyhedrization of border points in the sense of general topology, that is, we clarify relations between border points and the triangulated surface
Combinatorial topologies for discrete planes
International audienc
Polyhedral Set Operations for 3D Discrete Object Deformation
International audienc