723 research outputs found

    Exoplanets with JWST: degeneracy, systematics and how to avoid them

    Get PDF
    The high sensitivity and broad wavelength coverage of the James Webb Space Telescope will transform the field of exoplanet transit spectroscopy. Transit spectra are inferred from minute, wavelength-dependent variations in the depth of a transit or eclipse as the planet passes in front of or is obscured by its star, and the spectra contain information about the composition, structure and cloudiness of exoplanet atmospheres. Atmospheric retrieval is the preferred technique for extracting information from these spectra, but the process can be confused by astrophysical and instrumental systematic noise. We present results of retrieval tests based on synthetic, noisy JWST spectra, for clear and cloudy planets and active and inactive stars. We find that the ability to correct for stellar activity is likely to be a limiting factor for cloudy planets, as the effects of unocculted star spots may mimic the presence of a scattering slope due to clouds. We discuss the pros and cons of the available JWST instrument combinations for transit spectroscopy, and consider the effect of clouds and aerosols on the spectra. Aerosol high in a planet’s atmosphere obscures molecular absorption features in transmission, reducing the information content of spectra in wavelength regions where the cloud is optically thick. We discuss the usefulness of particular wavelength regions for identifying the presence of cloud, and suggest strategies for solving the highly-degenerate retrieval problem for these objects

    Molecular gas kinematics within the central 250 pc of the Milky Way

    Get PDF
    Using spectral-line observations of HNCO, N2H+, and HNC, we investigate the kinematics of dense gas in the central ~250 pc of the Galaxy. We present SCOUSE (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, SCOUSE accurately describes the {l, b, v_LSR} distribution of CMZ gas, which is asymmetric about Sgr A* in both position and velocity. Velocity dispersions range from 2.6 km/s28. The gas is distributed throughout several "streams", with projected lengths ~100-250 pc. We link the streams to individual clouds and sub-regions, including Sgr C, the 20 and 50 km/s clouds, the dust ridge, and Sgr B2. Shell-like emission features can be explained by the projection of independent molecular clouds in Sgr C and the newly identified conical profile of Sgr B2 in {l ,b, v_LSR} space. These features have previously invoked supernova-driven shells and cloud-cloud collisions as explanations. We instead caution against structure identification in velocity-integrated emission maps. Three geometries describing the 3-D structure of the CMZ are investigated: i) two spiral arms; ii) a closed elliptical orbit; iii) an open stream. While two spiral arms and an open stream qualitatively reproduce the gas distribution, the most recent parameterisation of the closed elliptical orbit does not. Finally, we discuss how proper motion measurements of masers can distinguish between these geometries, and suggest that this effort should be focused on the 20 km/s and 50 km/s clouds and Sgr C

    First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e

    Get PDF
    To date, infrared interferometry at best achieved contrast ratios of a few times 10410^{-4} on bright targets. GRAVITY, with its dual-field mode, is now capable of high contrast observations, enabling the direct observation of exoplanets. We demonstrate the technique on HR8799, a young planetary system composed of four known giant exoplanets. We used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR8799e planet situated at 390 mas from the star. Data reduction included post-processing to remove the flux leaking from the central star and to extract the coherent flux of the planet. The inferred K band spectrum of the planet has a spectral resolution of 500. We also derive the astrometric position of the planet relative to the star with a precision on the order of 100μ\,\muas. The GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital solutions. A small adjustment of a few degrees to the orbital inclination of HR 8799 e can resolve the tension, implying that the orbits are close to, but not strictly coplanar. The spectrum, with a signal-to-noise ratio of 5\approx 5 per spectral channel, is compatible with a late-type L brown dwarf. Using Exo-REM synthetic spectra, we derive a temperature of 1150±501150\pm50\,K and a surface gravity of 104.3±0.310^{4.3\pm0.3}\,cm/s2^{2}. This corresponds to a radius of 1.170.11+0.13RJup1.17^{+0.13}_{-0.11}\,R_{\rm Jup} and a mass of 104+7MJup10^{+7}_{-4}\,M_{\rm Jup}, which is an independent confirmation of mass estimates from evolutionary models. Our results demonstrate the power of interferometry for the direct detection and spectroscopic study of exoplanets at close angular separations from their stars.Comment: published in A&

    Molecular gas kinematics within the central 250 pc of the Milky Way

    Get PDF
    Using spectral-line observations of HNCO, N2H+, and HNC, we investigate the kinematics of dense gas in the central ~250 pc of the Galaxy. We present SCOUSE (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, SCOUSE accurately describes the {l, b, v_LSR} distribution of CMZ gas, which is asymmetric about Sgr A* in both position and velocity. Velocity dispersions range from 2.6 km/s28. The gas is distributed throughout several "streams", with projected lengths ~100-250 pc. We link the streams to individual clouds and sub-regions, including Sgr C, the 20 and 50 km/s clouds, the dust ridge, and Sgr B2. Shell-like emission features can be explained by the projection of independent molecular clouds in Sgr C and the newly identified conical profile of Sgr B2 in {l ,b, v_LSR} space. These features have previously invoked supernova-driven shells and cloud-cloud collisions as explanations. We instead caution against structure identification in velocity-integrated emission maps. Three geometries describing the 3-D structure of the CMZ are investigated: i) two spiral arms; ii) a closed elliptical orbit; iii) an open stream. While two spiral arms and an open stream qualitatively reproduce the gas distribution, the most recent parameterisation of the closed elliptical orbit does not. Finally, we discuss how proper motion measurements of masers can distinguish between these geometries, and suggest that this effort should be focused on the 20 km/s and 50 km/s clouds and Sgr C

    High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

    Get PDF
    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (similar to 10(-3) bar) at 300 K and release it at similar to 450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 pi orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materialsopen

    Molecular gas kinematics within the central 250 pc of the Milky Way

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Using spectral line observations of HNCO, N2H+, and HNC, we investigate the kinematics of dense gas in the central ∼250 pc of the Galaxy. We present SCOUSE (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line-fitting algorithm designed to analyse large volumes of spectral line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, SCOUSE accurately describes the {l, b, vLSR} distribution of Central Molecular Zone (CMZ) gas, which is asymmetric about Sgr A* in both position and velocity. Velocity dispersions range from 2.6 km s−1 < σ < 53.1 km s−1. A median dispersion of 9.8 km s−1, translates to a Mach number, M3D≥28. The gas is distributed throughout several ‘streams’, with projected lengths ∼100–250 pc. We link the streams to individual clouds and sub-regions, including Sgr C, the 20 and 50 km s−1 clouds, the dust ridge, and Sgr B2. Shell-like emission features can be explained by the projection of independent molecular clouds in Sgr C and the newly identified conical profile of Sgr B2 in {l, b, vLSR} space. These features have previously invoked supernova-driven shells and cloud–cloud collisions as explanations. We instead caution against structure identification in velocity-integrated emission maps. Three geometries describing the 3D structure of the CMZ are investigated: (i) two spiral arms; (ii) a closed elliptical orbit; (iii) an open stream. While two spiral arms and an open stream qualitatively reproduce the gas distribution, the most recent parametrization of the closed elliptical orbit does not. Finally, we discuss how proper motion measurements of masers can distinguish between these geometries, and suggest that this effort should be focused on the 20 km s−1 and 50 km s−1 clouds and Sgr C.Peer reviewe

    Dense gas in the Galactic central molecular zone is warm and heated by turbulence

    Get PDF
    The Galactic center is the closest region in which we can study star formation under extreme physical conditions like those in high-redshift galaxies. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it. We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p-H2_2CO) transitions. We used the 32,122,0/30,320,23_{2,1} - 2_{2,0} / 3_{0,3} - 2_{0,2} line ratio to determine the gas temperature in n104105n \sim 10^4 - 10^5 cm3^{-3} gas. We have produced temperature maps and cubes with 30" and 1 km/s resolution and published all data in FITS form. Dense gas temperatures in the Galactic center range from ~60 K to > 100 K in selected regions. The highest gas temperatures T_G > 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km/s and 50 km/s clouds, and in "The Brick" (G0.253+0.016). We infer an upper limit on the cosmic ray ionization rate ζCR<1014{\zeta}_{CR} < 10^{-14} 1/s. The dense molecular gas temperature of the region around our Galactic center is similar to values found in the central regions of other galaxies, in particular starburst systems. The gas temperature is uniformly higher than the dust temperature, confirming that dust is a coolant in the dense gas. Turbulent heating can readily explain the observed temperatures given the observed line widths. Cosmic rays cannot explain the observed variation in gas temperatures, so CMZ dense gas temperatures are not dominated by cosmic ray heating. The gas temperatures previously observed to be high in the inner ~75 pc are confirmed to be high in the entire CMZ

    Spatial distribution of star formation related to ionized regions throughout the inner Galactic plane

    Get PDF
    We present a comprehensive statistical analysis of star-forming objects located in the vicinities of 1360 bubble structures throughout the Galactic plane and their local environments. The compilation of ~70 000 star-forming sources, found in the proximity of the ionized (Hii) regions and detected in both Hi-GAL and GLIMPSE surveys, provided a broad overview of the different evolutionary stages of star-formation in bubbles, from prestellar objects to more evolved young stellar objects (YSOs). Surface density maps of star-forming objects clearly reveal an evolutionary trend where more evolved star-forming objects (Class II YSO candidates) are found spatially located near the center, while younger star-forming objects are found at the edge of the bubbles. We derived dynamic ages for a subsample of 182 H ii regions for which kinematic distances and radio continuum flux measurements were available. We detect approximately 80% more star-forming sources per unit area in the direction of bubbles than in the surrounding fields. We estimate the clump formation efficiency (CFE) of Hi-GAL clumps in the direction of the shell of the bubbles to be ~15%, around twice the value of the CFE in fields that are not affected by feedback effects. We find that the higher values of CFE are mostly due to the higher CFE of protostellar clumps, in particular in younger bubbles, whose density of the bubble shells is higher. We argue that the formation rate from prestellar to protostellar phase is probably higher during the early stages of the (H ii) bubble expansion. Furthermore, we also find a higher fraction of massive YSOs (MYSOs) in bubbles at the early stages of expansion ( < 2 Myr) than older bubbles. Evaluation of the fragmentation time inside the shell of bubbles advocates the preexistence of clumps in the medium before the bubble expansion in order to explain the formation of MYSOs in the youngest H ii regions ( < 1 Myr), as supported by numerical simulations. Approximately 23% of the Hi-GAL clumps are found located in the direction of a bubble, with 15% for prestellar clumps and 41% for protostellar clumps. We argue that the high fraction of protostellar clumps may be due to the acceleration of the star-formation process cause by the feedback of the (Hii) bubbles. © ESO, 2017
    corecore