92 research outputs found

    Cognitive performance among carriers of pathogenic copy number variants: analysis of 152,000 UK Biobank subjects

    Get PDF
    Background The UK Biobank is a unique resource for biomedical research, with extensive phenotypic and genetic data on half a million adults from the general population. We aimed to examine the effect of neurodevelopmental copy number variants (CNVs) on the cognitive performance of participants. Methods We used Affymetrix Power Tools and PennCNV-Affy software to analyze Affymetrix microarrays of the first 152,728 genotyped individuals. We annotated a list of 93 CNVs and compared their frequencies with control datasets. We analyzed the performance on seven cognitive tests of carriers of 12 CNVs associated with schizophrenia (n = 1087) and of carriers of another 41 neurodevelopmental CNVs (n = 484). Results The frequencies of the 93 CNVs in the Biobank subjects were remarkably similar to those among 26,628 control subjects from other datasets. Carriers of schizophrenia-associated CNVs and of the group of 41 other neurodevelopmental CNVs had impaired performance on the cognitive tests, with nine of 14 comparisons remaining statistically significant after correction for multiple testing. They also had lower educational and occupational attainment (p values between 10−7 and 10−18). The deficits in cognitive performance were modest (Z score reductions between 0.01 and 0.51), compared with individuals with schizophrenia in the Biobank (Z score reductions between 0.35 and 0.90). Conclusions This is the largest study on the cognitive phenotypes of CNVs to date. Adult carriers of neurodevelopmental CNVs from the general population have significant cognitive deficits. The UK Biobank will allow unprecedented opportunities for analysis of further phenotypic consequences of CNVs

    Medical consequences of pathogenic CNVs in adults: Analysis of the UK Biobank

    Get PDF
    Background: Genomic CNVs increase the risk for early-onset neurodevelopmental disorders, but their impact on medical outcomes in later life is still poorly understood. The UK Biobank allows us to study the medical consequences of CNVs in middle and old age in half a million well-phenotyped adults. Methods: We analysed all Biobank participants for the presence of 54 CNVs associated with genomic disorders or clinical phenotypes, including their reciprocal deletions or duplications. After array quality control and exclusion of first-degree relatives, we compared 381 452 participants of white British or Irish origin who carried no CNVs with carriers of each of the 54 CNVs (ranging from 5 to 2843 persons). We used logistic regression analysis to estimate the risk of developing 58 common medical phenotypes (3132 comparisons). Results and conclusions: Many of the CNVs have profound effects on medical health and mortality, even in people who have largely escaped early neurodevelopmental outcomes. Forty-six CNV–phenotype associations were significant at a false discovery rate threshold of 0.1, all in the direction of increased risk. Known medical consequences of CNVs were confirmed, but most identified associations are novel. Deletions at 16p11.2 and 16p12.1 had the largest numbers of significantly associated phenotypes (seven each). Diabetes, hypertension, obesity and renal failure were affected by the highest numbers of CNVs. Our work should inform clinicians in planning and managing the medical care of CNV carriers

    Schizophrenia-associated genomic copy number variants and subcortical brain volumes in the UK Biobank

    Get PDF
    Schizophrenia is a highly heritable disorder for which anatomical brain alterations have been repeatedly reported in clinical samples. Unaffected at-risk groups have also been studied in an attempt to identify brain changes that do not reflect reverse causation or treatment effects. However, no robust associations have been observed between neuroanatomical phenotypes and known genetic risk factors for schizophrenia. We tested subcortical brain volume differences between 49 unaffected participants carrying at least one of the 12 copy number variants associated with schizophrenia in UK Biobank and 9063 individuals who did not carry any of the 93 copy number variants reported to be pathogenic. Our results show that CNV carriers have reduced volume in some of the subcortical structures previously shown to be reduced in schizophrenia. Moreover, these associations partially accounted for the association between pathogenic copy number variants and cognitive impairment, which is one of the features of schizophrenia

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Effects of genomic copy number variants penetrant for schizophrenia on cortical thickness and surface area in healthy individuals: analysis of the UK Biobank

    Get PDF
    Background Schizophrenia is a highly heritable disorder with undetermined neurobiological causes. Understanding the impact on brain anatomy of carrying genetic risk for the disorder will contribute to uncovering its neurobiological underpinnings. Aims To examine the effect of rare copy number variants (CNVs) associated with schizophrenia on brain cortical anatomy in a sample of unaffected participants from the UK Biobank. Method We used regression analyses to compare cortical thickness and surface area (total and across gyri) between 120 unaffected carriers of rare CNVs associated with schizophrenia and 16 670 participants without any pathogenic CNV. A measure of cortical thickness and surface area covariance across gyri was also compared between groups. Results Carrier status was associated with reduced surface area (β = −0.020 mm2, P < 0.001) and less robustly with increased cortical thickness (β = 0.015 mm, P = 0.035), and with increased covariance in thickness (carriers z = 0.31 v. non-carriers z = 0.22, P < 0.0005). Associations were mainly present in frontal and parietal areas and driven by a limited number of rare risk alleles included in our analyses (mainly 15q11.2 deletion for surface area and 16p13.11 duplication for thickness covariance). Conclusions Results for surface area conformed with previous clinical findings, supporting surface area reductions as an indicator of genetic liability for schizophrenia. Results for cortical thickness, though, argued against its validity as a potential risk marker. Increased structural thickness covariance across gyri also appears related to risk for schizophrenia. The heterogeneity found across the effects of rare risk alleles suggests potential different neurobiological gateways into schizophrenia's phenotype

    Effects of pathogenic CNVs on physical traits in participants of the UK Biobank

    Get PDF
    Background Copy number variants (CNVs) have been shown to increase risk for physical anomalies, developmental, psychiatric and medical disorders. Some of them have been associated with changes in weight, height, and other physical traits. As most studies have been performed on children and young people, these effects of CNVs in middle-aged and older people are not well established. The UK Biobank recruited half a million adults who provided a variety of physical measurements. We called all CNVs from the Affymetrix microarrays and selected a set of 54 CNVs implicated as pathogenic (including their reciprocal deletions/duplications) and that were found in five or more persons. Linear regression analysis was used to establish their association with 16 physical traits relevant to human health. Results 396,725 participants of white British or Irish descent (excluding first-degree relatives) passed our quality control filters. Out of the 864 CNV/trait associations, 214 were significant at a false discovery rate of 0.1, most of them novel. Many of these traits increase risk for adverse health outcomes: e.g. increases in weight, waist-to-hip ratio, pulse rate and body fat composition. Deletions at 16p11.2, 16p12.1, NRXN1 and duplications at 16p13.11 and 22q11.2 produced the highest numbers of significant associations. Five CNVs produced average changes of over one standard deviation for the 16 traits, compared to controls: deletions at 16p11.2 and 22q11.2, and duplications at 3q29, the Williams-Beuren and Potocki-Lupski regions. CNVs at 1q21.1, 2q13, 16p11.2 and 16p11.2 distal, 16p12.1, 17p12 and 17q12 demonstrated one or more mirror image effects of deletions versus duplications. Conclusions Carriers of many CNVs should be monitored for physical traits that increase morbidity and mortality. Genes within these CNVs can give insights into biological processes and therapeutic interventions

    Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: analysis of the UK Biobank

    Get PDF
    Background: Rare copy number variants (CNVs) are associated with risk of neurodevelopmental disorders characterised by varying degrees of cognitive impairment, including schizophrenia, autism spectrum disorder and intellectual disability. However, the effects of many individual CNVs in carriers without neurodevelopmental disorders are not yet fully understood, and little is known about the effects of reciprocal copy number changes of known pathogenic loci. Aims We aimed to analyse the effect of CNV carrier status on cognitive performance and measures of occupational and social outcomes in unaffected individuals from the UK Biobank. Method: We called CNVs in the full UK Biobank sample and analysed data from 420 247 individuals who passed CNV quality control, reported White British or Irish ancestry and were not diagnosed with neurodevelopmental disorders. We analysed 33 pathogenic CNVs, including their reciprocal deletions/duplications, for association with seven cognitive tests and four general measures of functioning: academic qualifications, occupation, household income and Townsend Deprivation Index. Results: Most CNVs (24 out of 33) were associated with reduced performance on at least one cognitive test or measure of functioning. The changes on the cognitive tests were modest (average reduction of 0.13 s.d.) but varied markedly between CNVs. All 12 schizophrenia-associated CNVs were associated with significant impairments on measures of functioning. Conclusions CNVs implicated in neurodevelopmental disorders, including schizophrenia, are associated with cognitive deficits, even among unaffected individuals. These deficits may be subtle but CNV carriers have significant disadvantages in educational attainment and ability to earn income in adult life
    corecore