21 research outputs found

    Multi-environmental evaluation of wheat tetraploid genotypes for agronomic traits under rainfed conditions in Syria

    Get PDF
    This study was conducted at Homs, Al-Swaida and Tartous, General Commission for Scientific Agricultural Research, Syria during 2016/2017 season. Seven wheat genotypes were planted under rainfed conditions in randomized complete block design with three replications. Studied traits were days to maturity, plant height, number of grain per spike, grain weight per spike, 1000 kernal weight and grain yield per plant to evaluate variance between genotypes and locations. Results showed existence of high variance between studied genotypes in all traits especially plant height. It resulted that genotype W45193 was significantly superior in grain yield per plant with an increasing rate of 69.62% comparing to control Sham 5. Also, it was significantly superior in spike numbers with an increasing rate of 53.53%, 57.24% compared to both controls Sham 3 and Sham 5, respectively. Genotype W45064 was significantly superior in grain weight per spike and 1000 kernal weight compare to both controls Sham 3 and Sham 5. W 45194 was significantly superior in 1000 kernal weight comparing to control Sham 5 (36.34, 31.16 g), respectively. Furthermore, all studied traits (except spike number per plant) were more significant in Tartous compare to both Homs and Al-Swaida

    Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging

    Get PDF
    Dielectric metasurfaces support resonances that are widely explored both for far-field wavefront shaping and for near-field sensing and imaging. Their design explores the interplay between localised and extended resonances, with a typical trade-off between Q-factor and light localisation; high Q-factors are desirable for refractive index sensing while localisation is desirable for imaging resolution. Here, we show that a dielectric metasurface consisting of a nanohole array in amorphous silicon provides a favourable trade-off between these requirements. We have designed and realised the metasurface to support two optical modes both with sharp Fano resonances that exhibit relatively high Q-factors and strong spatial confinement, thereby concurrently optimizing the device for both imaging and biochemical sensing. For the sensing application, we demonstrate a limit of detection (LOD) as low as 1 pg/ml for Immunoglobulin G (IgG); for resonant imaging, we demonstrate a spatial resolution below 1 µm and clearly resolve individual E. coli bacteria. The combined low LOD and high spatial resolution opens new opportunities for extending cellular studies into the realm of microbiology, e.g. for studying antimicrobial susceptibility

    Changing Moods

    No full text
    corecore