7,906 research outputs found

    The Heterogeneity, Distribution, and Environmental Associations of Borrelia burgdorferi Sensu Lato, the Agent of Lyme Borreliosis, in Scotland

    Get PDF
    Genospecies controls were obtained from the laboratory of Dr. Muriel Cornet at the Institut Pasteur, Paris. We thank Bob Furness for collecting ticks from passerine birds, Steph Vollmer for processing the samples from one site, E. Packer, A. Wiebe, J. Low, E. Stephen, and J. Arthur for help collecting ticks, Kenny Raey for laboratory assistance, and Jackie Potts for statistical advice. Marianne C. James was funded by a Biotechnology and Biological Sciences Research Council (BBSRC) Doctoral Training Grant with CASE support from the Macaulay Development Trust awarded to Alan S. Bowman and Lucy Gilbert. Lucy Gilbert was supported by the Scottish Government’s Rural and Environment Science and Analytical Services Division (RESAS).Peer reviewedPublisher PD

    Superluminal travel requires negative energies

    Full text link
    I investigate the relationship between faster-than-light travel and weak-energy-condition violation, i.e., negative energy densities. In a general spacetime it is difficult to define faster-than-light travel, and I give an example of a metric which appears to allow superluminal travel, but in fact is just flat space. To avoid such difficulties, I propose a definition of superluminal travel which requires that the path to be traveled reach a destination surface at an earlier time than any neighboring path. With this definition (and assuming the generic condition) I prove that superluminal travel requires weak-energy-condition violation.Comment: 5 pages, RevTeX, 2 figures with epsf. This paper now contains all the material of gr-qc/6805003 and gr-qc/9806091 since these became a single article in Phys. Rev. Let

    The Mount Wilson optical interferometer: The first automated instrument and the prospects for lunar interferometry

    Get PDF
    Before contemplating an optical interferometer on the Moon one must first review the accomplishments achieved by this technology in scientific applications for astronomy. This will be done by presenting the technical status of optical interferometry as achieved by the Mount Wilson Optical Interferometer. The further developments needed for a future lunar-based interferometer are discussed

    A Simplified Crossing Fiber Model in Diffusion Weighted Imaging

    Get PDF
    Diffusion MRI (dMRI) is a vital source of imaging data for identifying anatomical connections in the living human brain that form the substrate for information transfer between brain regions. dMRI can thus play a central role toward our understanding of brain function. The quantitative modeling and analysis of dMRI data deduces the features of neural fibers at the voxel level, such as direction and density. The modeling methods that have been developed range from deterministic to probabilistic approaches. Currently, the Ball-and-Stick model serves as a widely implemented probabilistic approach in the tractography toolbox of the popular FSL software package and FreeSurfer/TRACULA software package. However, estimation of the features of neural fibers is complex under the scenario of two crossing neural fibers, which occurs in a sizeable proportion of voxels within the brain. A Bayesian non-linear regression is adopted, comprised of a mixture of multiple non-linear components. Such models can pose a difficult statistical estimation problem computationally. To make the approach of Ball-and-Stick model more feasible and accurate, we propose a simplified version of Ball-and-Stick model that reduces parameter space dimensionality. This simplified model is vastly more efficient in the terms of computation time required in estimating parameters pertaining to two crossing neural fibers through Bayesian simulation approaches. Moreover, the performance of this new model is comparable or better in terms of bias and estimation variance as compared to existing models

    Microscopic heat from the energetics of stochastic phenomena

    Full text link
    The energetics of the stochastic process has shown the balance of energy on the mesoscopic level. The heat and the energy defined there are, however, generally different from their macroscopic counterpart. We show that this discrepancy can be removed by adding to these quantities the reversible heat associated with the mesoscopic free energy.Comment: 4 pages, 0 figur

    Experimental Outlook for the Pentaquark

    Full text link
    A critical look is taken at both positive and null evidence for the Θ+\Theta^+ pentaquark. Potential problems with experiments will be discussed and the question of what conclusion can be drawn from both the positive and the null results is examined. First the question of existence of the Θ+\Theta^+ pentaquark is considered, followed by a discussion of new experiments that are either planned or in progress to answer questions about its mass, width and isospin. Finally, indirect evidence for the parity of the Θ+\Theta^+ is examined, and suggestions for experiments to measure its parity directly are given.Comment: MESON2004 conference proceedings, 10 pages, 1 figur

    Using White Dish CMB Anisotropy Data to Probe Open and Flat-Lambda CDM Cosmogonies

    Full text link
    We use data from the White Dish experiment to set limits on cosmic microwave background radiation anisotropies in open and spatially-flat-Lambda cold dark matter cosmogonies. We account for the White Dish calibration uncertainty, and marginalize over the offset and gradient removed from the data. Our 2-sigma upper limits are larger than those derived previously. These upper limits are consistent with those derived from the COBECOBE-DMR data for all models tested.Comment: 17 pages of latex. Uses aasms4.sty. 4 figures included. Submitted to ApJ
    • 

    corecore