1,990 research outputs found
Telerobotic controller development
To meet NASA's space station's needs and growth, a modular and generic approach to robotic control which provides near-term implementation with low development cost and capability for growth into more autonomous systems was developed. The method uses a vision based robotic controller and compliant hand integrated with the Remote Manipulator System arm on the Orbiter. A description of the hardware and its system integration is presented
Size-fractionated 234Th in continental shelf waters off New England: Implications for the role of colloids in oceanic trace metal scavenging
Measurements of 234Th (t1/2 = 24.1 days) in dissolved, colloidal, and particulate forms have been made to investigate the role of colloids in reactive metal scavenging in the surface waters of Buzzards Bay, over an annual cycle, and in the shelf and slope waters off New England. At-sea sampling involved prefiltering seawater through 0.2 μm filters followed by cross-flow filtration using a 10,000 nominal molecular weight filter to collect colloidal (10,000 NMW-0.2 μm) and dissolved (\u3c10,000 NMW) phases. Total 234Th activities increase with distance from shore, indicative of enhanced scavenging in the particle-rich nearshore waters. Clearly seen in Buzzards Bay are seasonal changes in total 234Th, with activities ranging from ≈0.7 dpm I−1 in the winter, preceeding a phytoplankton bloom, to ≈0.2 dpm I−1 in the summer. Throughout the annual cycle, 2–16% of total 234Th is colloidal, 22–40% is dissolved, and 45–75% is particulate. In the offshore waters, ≈1% of total 234Th is colloidal, 2–6% is particulate, and 93–98% is dissolved. The 234Th size-distribution exhibits a systematic increase in the association of 234Th with particulate and, to a lesser extent, colloidal matter with increasing suspended particle concentration (Cp). Moreover, a first-order prediction of the fractionation of 234Th between the various size classes is demonstrated using measured solid-solution partition coefficients. Box model calculations indicate a mean residence time of colloidal 234Th with respect to aggregation into particles of 0.3 days in Buzzards Bay, which compares with 2 days for dissolved and 4 days for particulate 234Th. In the offshore surface waters, colloidal and particulate 234Th residence times are ≈0.5 days and 2–3 days respectively, compared with 30–85 days for the dissolved phase. The short and relatively invariant residence time of colloidal 234Th suggests that colloidal aggregation may not be rate-limiting in controlling the scavenging of thorium and, by analogy, other particle-reactive trace metals. An implication of these results is that colloidal 234Th may be tracing a reactive intermediate in the bacterially mediated decomposition of large, rapidly-sinking biogenic aggregates. Using the size-fractionated 234Th data, we demonstrate that Kd values for thorium are invariant with Cp and that scavenging rate constants exhibit a first-order dependence on Cp. Thus, “particle-concentration effects” are negligible for oceanic waters (Cp ≈0.01–1 mg I−1)
Conceptual Hierarchies in a Flat Attractor Network: Dynamics of Learning and Computations
The structure of people’s conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical (Collins & Quillian, 1969). For example, superordinate concepts (vegetable) are assumed to reside at a higher level than basic-level concepts (carrot). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts (vegetable ). In Experiment and Simulation 3, counterintuitive results regarding the temporal dynamics of similarity in semantic priming are explained by the model. By treating both types of concepts the same in terms of representation, learning, and computations, the model provides new insights into semantic memory
Formation of Large-Scale Obscuring Wall and AGN Evolution Regulated by Circumnuclear Starbursts
By considering the radiative force by a circumnuclear starburst as well as an
AGN, we analyze the equilibrium configuration and the stability of dusty gas in
the circumnuclear regions. It is found that the radiative force by an intensive
starburst can support a stable gaseous wall with a scale-height of several
hundred parsecs. Moreover, by taking the simple stellar evolution in the
starburst into account, we find that the covering factor of the wall decreases
on a time-scale of several yr. The large-scale wall, if formed, works to
obscure the nucleus due to the dust opacity. Hence, it is anticipated that the
index of AGN type tends to shift from higher to lower in several yr
according as the circumnuclear starburst becomes dimmer. On the other hand, if
the AGN itself is brighter than the circumnuclear starburst (e.g. quasar case),
no stable large-scale wall forms. In that case, the AGN is highly probably
identified as type 1. The present mechanism may provide a physical explanation
for the putative correlation between AGN type and host properties that Sy2's
are more frequently associated with circumnuclear starbursts than Sy1's,
whereas quasars are mostly observed as type 1 regardless of star-forming
activity in the host galaxies.Comment: 10 pages, 3 figures, ApJ Letters in pres
Lattice QCD with mixed actions
We discuss some of the implications of simulating QCD when the action used
for the sea quarks is different from that used for the valence quarks. We
present exploratory results for the hadron mass spectrum and pseudoscalar meson
decay constants using improved staggered sea quarks and HYP-smeared overlap
valence quarks. We propose a method for matching the valence quark mass to the
sea quark mass and demonstrate it on UKQCD clover data in the simpler case
where the sea and valence actions are the same.Comment: 15 pages, 10 figures some minor modification to text and figures.
Accepted for publicatio
The 129-iodine content of subtropical Pacific waters : impact of Fukushima and other anthropogenic 129-iodine sources
© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 4839-4852, doi:10.5194/bg-11-4839-2014.Results obtained from a dedicated radiochemistry cruise approximately 100 days after the 11 March 2011 Tohoku earthquake and subsequent disaster at the Fukushima Daiichi Nuclear Power Plant show that Fukushima derived radionuclides in the nearby ocean environment had penetrated, on average, to ≤250 m depth (1026.5 kg m3 potential density surface). The excess inventory of Fukushima-derived 129I in the region (∼150 000 km2) sampled during the cruise is estimated to have been between 0.89 and 1.173 billion Bq (∼136 to ∼179 grams) of 129I. Based on a tight tracer–tracer relation with 134Cs (or 137Cs) and estimates that most of the excess cesium is due to direct discharge, we infer that much of the excess 129I is from direct (non-atmospheric deposition) discharge. After taking into account oceanic transport, we estimate the direct discharge, i.e., that directly released into the ocean, off Fukushima to have been ∼1 kg 129I. Although this small pulse is dwarfed by the ~90 kg of weapons-testing-derived 129I that was released into the environment in the late 1950s and early 1960s, it should be possible to use Fukushima-derived 129I and other radionuclides (e.g., 134, 137Cs) to study transport and entrainment processes along and across the Kuroshio Current.This
work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344
Autonomous, high-resolution observations of particle flux in the oligotrophic ocean
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 5517-5531, doi:10.5194/bg-10-5517-2013.Observational gaps limit our understanding of particle flux attenuation through the upper mesopelagic because available measurements (sediment traps and radiochemical tracers) have limited temporal resolution, are labor-intensive, and require ship support. Here, we conceptually evaluate an autonomous, optical proxy-based method for high-resolution observations of particle flux. We present four continuous records of particle flux collected with autonomous profiling floats in the western Sargasso Sea and the subtropical North Pacific, as well as one shorter record of depth-resolved particle flux near the Bermuda Atlantic Time-series Study (BATS) and Oceanic Flux Program (OFP) sites. These observations illustrate strong variability in particle flux over very short (~1-day) timescales, but at longer timescales they reflect patterns of variability previously recorded during sediment trap time series. While particle flux attenuation at BATS/OFP agreed with the canonical power-law model when observations were averaged over a month, flux attenuation was highly variable on timescales of 1–3 days. Particle fluxes at different depths were decoupled from one another and from particle concentrations and chlorophyll fluorescence in the immediately overlying surface water, consistent with horizontal advection of settling particles. We finally present an approach for calibrating this optical proxy in units of carbon flux, discuss in detail the related, inherent physical and optical assumptions, and look forward toward the requirements for the quantitative application of this method in highly time-resolved studies of particle export and flux attenuation.M.L.E. was
supported by a WHOI Postdoctoral Scholar fellowship, and the
floats used in this project were funded by the above NASA grant
and by ONR (DURIP, N00014-10-1-0776)
Sinking phytoplankton associated with carbon flux in the Atlantic Ocean
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 61 (2016): 1172–1187, doi:10.1002/lno.10253.The composition of sinking particles and the mechanisms leading to their transport ultimately control how much carbon is naturally sequestered in the deep ocean by the “biological pump.” While detrital particles often contain much of the sinking carbon, sinking of intact phytoplankton cells can also contribute to carbon export, which represents a direct flux of carbon from the atmosphere to the deep ocean by circumventing the surface ocean food web. Phytoplankton that contributed to carbon flux were identified in sinking material collected by short-term sediment trap deployments conducted along a transect off the eastern shore of South America. Particulate organic carbon flux at 125 m depth did not change significantly along the transect. Instead, changes occurred in the composition and association of phytoplankton with detrital particles. The fluxes of diatoms, coccolithophores, dinoflagellates, and nano-sized cells at 125 m were unrelated to the overlying surface population abundances, indicating that functional-group specific transport mechanisms were variable across locations. The dominant export mechanism of phytoplankton at each station was putatively identified by principal component analysis and fell into one of three categories; (1) transport and sinking of individual, viable diatom cells, (2) transport by aggregates and fecal pellets, or (3) enhanced export of coccolithophores through direct settling and/or aggregationFunding for the DeepDOM cruise was
provided by the National Science Foundation (NSF) grant OCE-1154320
to E. B. Kujawinski and K. Longnecker, WHOI. Partial research support
was provided by NSF through grants OCE-0925284, and OCE-1316036
to S.T. Dyhrman. C.A. Durkin was supported by a Woods Hole Oceanographic
Institution Devonshire Postdoctoral Scholarship
Solvable Optimal Velocity Models and Asymptotic Trajectory
In the Optimal Velocity Model proposed as a new version of Car Following
Model, it has been found that a congested flow is generated spontaneously from
a homogeneous flow for a certain range of the traffic density. A
well-established congested flow obtained in a numerical simulation shows a
remarkable repetitive property such that the velocity of a vehicle evolves
exactly in the same way as that of its preceding one except a time delay .
This leads to a global pattern formation in time development of vehicles'
motion, and gives rise to a closed trajectory on -
(headway-velocity) plane connecting congested and free flow points. To obtain
the closed trajectory analytically, we propose a new approach to the pattern
formation, which makes it possible to reduce the coupled car following
equations to a single difference-differential equation (Rondo equation). To
demonstrate our approach, we employ a class of linear models which are exactly
solvable. We also introduce the concept of ``asymptotic trajectory'' to
determine and (the backward velocity of the pattern), the global
parameters associated with vehicles' collective motion in a congested flow, in
terms of parameters such as the sensitivity , which appeared in the original
coupled equations.Comment: 25 pages, 15 eps figures, LaTe
Rigorous Real-Time Feynman Path Integral for Vector Potentials
we will show the existence and uniqueness of a real-time, time-sliced Feynman
path integral for quantum systems with vector potential. Our formulation of the
path integral will be derived on the transition probability amplitude via
improper Riemann integrals. Our formulation will hold for vector potential
Hamiltonian for which its potential and vector potential each carries at most a
finite number of singularities and discontinuities
- …