2,440 research outputs found

    Towards Spectral Geometry for Causal Sets

    Full text link
    We show that the Feynman propagator (or the d'Alembertian) of a causal set contains the complete information about the causal set. Intuitively, this is because the Feynman propagator, being a correlator that decays with distance, provides a measure for the invariant distance between pairs of events. Further, we show that even the spectra alone (of the self-adjoint and anti-self-adjoint parts) of the propagator(s) and d'Alembertian already carry large amounts of geometric information about their causal set. This geometric information is basis independent and also gauge invariant in the sense that it is relabeling invariant (which is analogue to diffeomorphism invariance). We provide numerical evidence that the associated spectral distance between causal sets can serve as a measure for the geometric similarity between causal sets.Comment: 15 pages, 8 figures. v2: Minor edits and additions, references added, discussion added on distinguishing manifoldlike causal sets from non-manifoldlike causal sets, comments added on the extension of results to 4D and on spectral dimensio

    Nonpointlike Particles in Harmonic Oscillators

    Get PDF
    Quantum mechanics ordinarily describes particles as being pointlike, in the sense that the uncertainty Δx\Delta x can, in principle, be made arbitrarily small. It has been shown that suitable correction terms to the canonical commutation relations induce a finite lower bound to spatial localisation. Here, we perturbatively calculate the corrections to the energy levels of an in this sense nonpointlike particle in isotropic harmonic oscillators. Apart from a special case the degeneracy of the energy levels is removed.Comment: LaTeX, 9 pages, 1 figure included via epsf optio

    Spacetime could be simultaneously continuous and discrete in the same way that information can

    Full text link
    There are competing schools of thought about the question of whether spacetime is fundamentally either continuous or discrete. Here, we consider the possibility that spacetime could be simultaneously continuous and discrete, in the same mathematical way that information can be simultaneously continuous and discrete. The equivalence of continuous and discrete information, which is of key importance in information theory, is established by Shannon sampling theory: of any bandlimited signal it suffices to record discrete samples to be able to perfectly reconstruct it everywhere, if the samples are taken at a rate of at least twice the bandlimit. It is known that physical fields on generic curved spaces obey a sampling theorem if they possess an ultraviolet cutoff. Most recently, methods of spectral geometry have been employed to show that also the very shape of a curved space (i.e., of a Riemannian manifold) can be discretely sampled and then reconstructed up to the cutoff scale. Here, we develop these results further, and we here also consider the generalization to curved spacetimes, i.e., to Lorentzian manifolds

    Quantum gravity effects on statistics and compact star configurations

    Full text link
    The thermodynamics of classical and quantum ideal gases based on the Generalized uncertainty principle (GUP) are investigated. At low temperatures, we calculate corrections to the energy and entropy. The equations of state receive small modifications. We study a system comprised of a zero temperature ultra-relativistic Fermi gas. It turns out that at low Fermi energy εF\varepsilon_F, the degenerate pressure and energy are lifted. The Chandrasekhar limit receives a small positive correction. We discuss the applications on configurations of compact stars. As εF\varepsilon_F increases, the radius, total number of fermions and mass first reach their nonvanishing minima and then diverge. Beyond a critical Fermi energy, the radius of a compact star becomes smaller than the Schwarzschild one. The stability of the configurations is also addressed. We find that beyond another critical value of the Fermi energy, the configurations are stable. At large radius, the increment of the degenerate pressure is accelerated at a rate proportional to the radius.Comment: V2. discussions on the stability of star configurations added, 17 pages, 2 figures, typos corrected, version to appear in JHE

    Group velocity of discrete-time quantum walks

    Get PDF
    We show that certain types of quantum walks can be modeled as waves that propagate in a medium with phase and group velocities that are explicitly calculable. Since the group and phase velocities indicate how fast wave packets can propagate causally, we propose the use of these wave velocities in our definition for the hitting time of quantum walks. Our definition of hitting time has the advantage that it requires neither the specification of a walker's initial condition nor of an arrival probability threshold. We give full details for the case of quantum walks on the Cayley graphs of Abelian groups. This includes the special cases of quantum walks on the line and on hypercubes

    Lorentz-covariant deformed algebra with minimal length

    Get PDF
    The DD-dimensional two-parameter deformed algebra with minimal length introduced by Kempf is generalized to a Lorentz-covariant algebra describing a (D+1D+1)-dimensional quantized space-time. For D=3, it includes Snyder algebra as a special case. The deformed Poincar\'e transformations leaving the algebra invariant are identified. Uncertainty relations are studied. In the case of D=1 and one nonvanishing parameter, the bound-state energy spectrum and wavefunctions of the Dirac oscillator are exactly obtained.Comment: 8 pages, no figure, presented at XV International Colloquium on Integrable Systems and Quantum Symmetries (ISQS-15), Prague, June 15-17, 200

    Lorentzian Spectral Geometry with Causal Sets

    Full text link
    We study discrete Lorentzian spectral geometry by investigating to what extent causal sets can be identified through a set of geometric invariants such as spectra. We build on previous work where it was shown that the spectra of certain operators derived from the causal matrix possess considerable but not complete power to distinguish causal sets. We find two especially successful methods for classifying causal sets and we computationally test them for all causal sets of up to 99 elements. One of the spectral geometric methods that we study involves holding a given causal set fixed and collecting a growing set of its geometric invariants such as spectra (including the spectra of the commutator of certain operators). The second method involves obtaining a limited set of geometric invariants for a given causal set while also collecting these geometric invariants for small `perturbations' of the causal set, a novel method that may also be useful in other areas of spectral geometry. We show that with a suitably chosen set of geometric invariants, this new method fully resolves the causal sets we considered. Concretely, we consider for this purpose perturbations of the original causal set that are formed by adding one element and a link. We discuss potential applications to the path integral in quantum gravity.Comment: 20 pages, 4 figure

    Operator identities in q-deformed Clifford analysis

    Get PDF
    In this paper, we define a q-deformation of the Dirac operator as a generalization of the one dimensional q-derivative. This is done in the abstract setting of radial algebra. This leads to a q-Dirac operator in Clifford analysis. The q-integration on R(m), for which the q-Dirac operator satisfies Stokes' formula, is defined. The orthogonal q-Clifford-Hermite polynomials for this integration are briefly studied

    Torus invariant divisors

    Full text link
    Using the language of polyhedral divisors and divisorial fans we describe invariant divisors on normal varieties X which admit an effective codimension one torus action. In this picture X is given by a divisorial fan on a smooth projective curve Y. Cartier divisors on X can be described by piecewise affine functions h on the divisorial fan S whereas Weil divisors correspond to certain zero and one dimensional faces of it. Furthermore we provide descriptions of the divisor class group and the canonical divisor. Global sections of line bundles O(D_h) will be determined by a subset of a weight polytope associated to h, and global sections of specific line bundles on the underlying curve Y.Comment: 16 pages; 5 pictures; small changes in the layout, further typos remove

    Generalization of Quantum Error Correction via the Heisenberg Picture

    Full text link
    We show that the theory of operator quantum error correction can be naturally generalized by allowing constraints not only on states but also on observables. The resulting theory describes the correction of algebras of observables (and may therefore suitably be called ``operator algebra quantum error correction''). In particular, the approach provides a framework for the correction of hybrid quantum-classical information and it does not require the state to be entirely in one of the corresponding subspaces or subsystems. We discuss applications to quantum teleportation and to the study of information flows in quantum interactions.Comment: 5 pages, preprint versio
    • …
    corecore