3,477 research outputs found
Program computes equilibrium normal shock and stagnation point solutions for arbitrary gas mixtures
Program computes solutions for flow parameters in arbitrary gas mixtures behind a normal and a reflected normal shock, for in-flight and shock-tube stagnation conditions. Equilibrium flow calculations are made by a free-energy minimization technique coupled with the steady-flow conservation equations and a modified Newton-Raphson iterative scheme
Microorganism study - Bacterial isolants from harsh environments Final report
Soil bacterial isolants from harsh environment
Determining the forsterite abundance of the dust around Asymptotic Giant Branch stars
Aims. We present a diagnostic tool to determine the abundance of the
crystalline silicate forsterite in AGB stars surrounded by a thick shell of
silicate dust. Using six infrared spectra of high mass-loss oxygen rich AGB
stars we obtain the forsterite abundance of their dust shells.
Methods. We use a monte carlo radiative transfer code to calculate infrared
spectra of dust enshrouded AGB stars. We vary the dust composition, mass-loss
rate and outer radius. We focus on the strength of the 11.3 and the 33.6 \mu m
forsterite bands, that probe the most recent (11.3 \mu m) and older (33.6 \mu
m) mass-loss history of the star. Simple diagnostic diagrams are derived,
allowing direct comparison to observed band strengths.
Results. Our analysis shows that the 11.3 \mu m forsterite band is a robust
indicator for the forsterite abundance of the current mass-loss period for AGB
stars with an optically thick dust shell. The 33.6 \mu m band of forsterite is
sensitive to changes in the density and the geometry of the emitting dust
shell, and so a less robust indicator. Applying our method to six high
mass-loss rate AGB stars shows that AGB stars can have forsterite abundances of
12% by mass and higher, which is more than the previously found maximum
abundance of 5%.Comment: Accepted for publication in A&
- …