103 research outputs found

    Chorioamnionitis induces hepatic inflammation and time-dependent changes of the enterohepatic circulation in the ovine fetus

    Get PDF
    Chorioamnionitis, inflammation of fetal membranes, is an important cause of preterm birth and a risk factor for the development of adverse neonatal outcomes including sepsis and intestinal pathologies. Intestinal bile acids (BAs) accumulation and hepatic cytokine production are involved in adverse intestinal outcomes. These findings triggered us to study the liver and enterohepatic circulation (EHC) following intra-amniotic (IA) lipopolysaccharide (LPS) exposure. An ovine chorioamnionitis model was used in which circulatory cytokines and outcomes of the liver and EHC of preterm lambs were longitudinally assessed following IA administration of 10 mg LPS at 5, 12 or 24h or 2, 4, 8 or 15d before preterm birth. Hepatic inflammation was observed, characterized by increased hepatic cytokine mRNA levels (5h – 2d post IA LPS exposure) and increased erythropoietic clusters (at 8 and 15 days post IA LPS exposure). Besides, 12h after IA LPS exposure, plasma BA levels were increased, whereas gene expression levels of several hepatic BA transporters were decreased. Initial EHC alterations normalized over time. Concluding, IA LPS exposure induces significant time-dependent changes in the fetal liver and EHC. These chorioamnionitis induced changes have potential postnatal consequences and the duration of IA LPS exposure might be essential herein

    Chorioamnionitis induces enteric nervous system injury: Effects of timing and inflammation in the ovine fetus

    Get PDF
    Background Chorioamnionitis, inflammation of the chorion and amnion, which often results from intrauterine infection, is associated with premature birth and contributes to significant neonatal morbidity and mortality, including necrotizing enterocolitis (NEC). Recently, we have shown that chronic chorioamnionitis is associated with significant structural enteric nervous system (ENS) abnormalities that may predispose to later NEC development. Understanding time point specific effects of an intra-amniotic (IA) infection on the ENS is important for further understanding the pathophysiological processes and for finding a window for optimal therapeutic strategies for an individual patient. The aim of this study was therefore to gain insight in the longitudinal effects of intrauterine LPS exposure (ranging from 5 h to 15 days before premature delivery) on the intestinal mucosa, submucosa, and ENS in fetal lambs by use of a well-established translational ovine chorioamnionitis model. Methods We used an ovine chorioamnionitis model to assess outcomes of the fetal ileal mucosa, submucosa and ENS following IA exposure to one dose of 10 mg LPS for 5, 12 or 24 h or 2, 4, 8 or 15 days. Results Four days of IA LPS exposure causes a decreased PGP9.5- and S100β-positive surface area in the myenteric plexus along with submucosal and mucosal intestinal inflammation that coincided with systemic inflammation. These changes were preceded by a glial cell reaction with early systemic and local gut inflammation. ENS changes and inflammation recovered 15 days after the IA LPS exposure. Conclusions The pattern of mucosal and submucosal inflammation, and ENS alterations in the fetus changed over time following IA LPS exposure. Although ENS damage seemed to recover after prolonged IA LPS exposure, additional postnatal inflammatory exposure, which a premature is likely to encounter, may further harm the ENS and influence functional outcome. In this context, 4 to 8 days of IA LPS exposure may form a period of increased ENS vulnerability and a potential window for optimal therapeutic strategies

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types

    Get PDF
    Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA), and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like), or hotspot mutation profile (oncogene-like). Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic features associated with MYC and the PMN across the 33 cancers of The Cancer Genome Atlas. Pan-cancer, 28% of all samples had at least one of the MYC paralogs amplified. In contrast, the MYC antagonists MGA and MNT were the most frequently mutated or deleted members, proposing a role as tumor suppressors. MYC alterations were mutually exclusive with PIK3CA, PTEN, APC, or BRAF alterations, suggesting that MYC is a distinct oncogenic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such as immune response and growth factor signaling; chromatin, translation, and DNA replication/repair were conserved pan-cancer. This analysis reveals insights into MYC biology and is a reference for biomarkers and therapeutics for cancers with alterations of MYC or the PMN. We present a computational study determining the frequency and extent of alterations of the MYC network across the 33 human cancers of TCGA. These data, together with MYC, positively correlated pathways as well as mutually exclusive cancer genes, will be a resource for understanding MYC-driven cancers and designing of therapeutics

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dysregulated in tumors, but only a handful are known to play pathophysiological roles in cancer. We inferred lncRNAs that dysregulate cancer pathways, oncogenes, and tumor suppressors (cancer genes) by modeling their effects on the activity of transcription factors, RNA-binding proteins, and microRNAs in 5,185 TCGA tumors and 1,019 ENCODE assays. Our predictions included hundreds of candidate onco- and tumor-suppressor lncRNAs (cancer lncRNAs) whose somatic alterations account for the dysregulation of dozens of cancer genes and pathways in each of 14 tumor contexts. To demonstrate proof of concept, we showed that perturbations targeting OIP5-AS1 (an inferred tumor suppressor) and TUG1 and WT1-AS (inferred onco-lncRNAs) dysregulated cancer genes and altered proliferation of breast and gynecologic cancer cells. Our analysis indicates that, although most lncRNAs are dysregulated in a tumor-specific manner, some, including OIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergistically dysregulate cancer pathways in multiple tumor contexts. Chiu et al. present a pan-cancer analysis of lncRNA regulatory interactions. They suggest that the dysregulation of hundreds of lncRNAs target and alter the expression of cancer genes and pathways in each tumor context. This implies that hundreds of lncRNAs can alter tumor phenotypes in each tumor context
    • …
    corecore