284 research outputs found
Engineering geology of British rocks and soils : Lias Group
The report begins with an introduction and a detailed modern assessment of the geology of the
Lias Group in terms of both stratigraphy and lithology. The modern lithostratigraphy is placed in
the context of the old, and sometimes more familiar, usage. The next two chapters deal with the
mineralogy of a suite of samples collected for the project, and an assessment of the nature and
influence of weathering based on a detailed analysis of the Lias dataset held in the BGS National
Geotechnical Properties Database. The following chapters cover geohazards associated with the
Lias Group, and a brief overview of the wide variety of industrial applications for which the Lias
is well known. The geotechnical database forms the basis of the penultimate chapter,
geotechnical properties. The contents of the database are analysed, interpreted, presented in
graphical form, and discussed in terms of statistical variation and in the light of likely
engineering behaviour. The engineering geology of the Lias Group is discussed in the final
chapter, borrowing from the preceding chapters. A comprehensive cited reference list and a
bibliography are provided. In addition to the large number of technical data provided to BGS, a
small data set has been generated by BGS laboratories, particularly in areas where the main
database was deficient, and also in connection with associated BGS studies of the swelling and
shrinkage properties of the Lias Group.
The individual items of data making up the database are not attributed. However, the
contribution of a wide range of consultancies, contractors, authorities, and individuals is
acknowledged. It is hoped that this report will provide a source of useful information to a wide
range of engineers, planners, scientists, and other interested parties concerned with Lias Group
materials.
It should be noted that whilst quantitative technical data are included in this report, these should
not be used as a substitute for proper site investigation
The N-methyl-d-aspartate receptor antagonist CPP alters synapse and spine structure and impairs long-term potentiation and long-term depression induced morphological plasticity in dentate gyrus of the awake rat
Long-term morphological synaptic changes associated with homosynaptic long-term potentiation (LTP) and heterosynaptic long-term depression (LTD) in vivo, in awake adult rats were analyzed using three-dimensional (3-D) reconstructions of electron microscope images of ultrathin serial sections from the molecular layer of the dentate gyrus. For the first time in morphological studies, the specificity of the effects of LTP and LTD on both spine and synapse ultrastructure was determined using an N-methyl-d-aspartate (NMDA) receptor antagonist CPP (3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid). There were no differences in synaptic density 24 h after LTP or LTD induction, and CPP alone had no effect on synaptic density. LTP increased significantly the proportion of mushroom spines, whereas LTD increased the proportion of thin spines, and both LTP and LTD decreased stubby spine number. Both LTP and LTD increased significantly spine head evaginations (spinules) into synaptic boutons and CPP blocked these changes. Synaptic boutons were smaller after LTD, indicating a pre-synaptic effect. Interestingly, CPP alone decreased bouton and mushroom spine volumes, as well as post-synaptic density (PSD) volume of mushroom spines.These data show similarities, but also some clear differences, between the effects of LTP and LTD on spine and synaptic morphology. Although CPP blocks both LTP and LTD, and impairs most morphological changes in spines and synapses, CPP alone was shown to exert effects on aspects of spine and synaptic structure
Metal enrichment processes
There are many processes that can transport gas from the galaxies to their
environment and enrich the environment in this way with metals. These metal
enrichment processes have a large influence on the evolution of both the
galaxies and their environment. Various processes can contribute to the gas
transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy
interactions and others. We review their observational evidence, corresponding
simulations, their efficiencies, and their time scales as far as they are known
to date. It seems that all processes can contribute to the enrichment. There is
not a single process that always dominates the enrichment, because the
efficiencies of the processes vary strongly with galaxy and environmental
properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 17; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
- …