915 research outputs found

    Thermal conductivity measurements of proton-heated warm dense aluminum.

    Get PDF
    Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5-2.7 g/cc and 2-10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rear surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0-15 ps, likely due to non-equilibrium conditions

    Anomalous material-dependent transport of focused, laser-driven proton beams.

    Get PDF
    Intense lasers can accelerate protons in sufficient numbers and energy that the resulting beam can heat materials to exotic warm (10 s of eV temperature) states. Here we show with experimental data that a laser-driven proton beam focused onto a target heated it in a localized spot with size strongly dependent upon material and as small as 35 μm radius. Simulations indicate that cold stopping power values cannot model the intense proton beam transport in solid targets well enough to match the large differences observed. In the experiment a 74 J, 670 fs laser drove a focusing proton beam that transported through different thicknesses of solid Mylar, Al, Cu or Au, eventually heating a rear, thin, Au witness layer. The XUV emission seen from the rear of the Au indicated a clear dependence of proton beam transport upon atomic number, Z, of the transport layer: a larger and brighter emission spot was measured after proton transport through the lower Z foils even with equal mass density for supposed equivalent proton stopping range. Beam transport dynamics pertaining to the observed heated spot were investigated numerically with a particle-in-cell (PIC) code. In simulations protons moving through an Al transport layer result in higher Au temperature responsible for higher Au radiant emittance compared to a Cu transport case. The inferred finding that proton stopping varies with temperature in different materials, considerably changing the beam heating profile, can guide applications seeking to controllably heat targets with intense proton beams

    Mental States Are Like Diseases

    Get PDF
    While Quine’s linguistic behaviorism is well-known, his Kant Lectures contain one of his most detailed discussions of behaviorism in psychology and the philosophy of mind. Quine clarifies the nature of his psychological commitments by arguing for a modest view that is against ‘excessively restrictive’ variants of behaviorism while maintaining ‘a good measure of behaviorist discipline…to keep [our mental] terms under control’. In this paper, I use Quine’s Kant Lectures to reconstruct his position. I distinguish three types of behaviorism in psychology and the philosophy of mind: ontological behaviorism, logical behaviorism, and epistemological behaviorism. I then consider Quine’s perspective on each of these views and argue that he does not fully accept any of them. By combining these perspectives we arrive at Quine’s surprisingly subtle view about behaviorism in psychology

    Female preference for blue in Japan blue guppies (Poecilia reticulata)

    Get PDF
    Guppies (Poecilia reticulata) are widely used as a model species in mate choice studies. Although native to South America, guppies have been introduced to natural water bodies in disparate regions of the globe. Here, for the first time, we examine guppies from one such introduced population in Japan where males have evolved a predominantly blue color pattern. Previous studies of wild-type guppies have shown blue to play a relatively minor role in the mate choice decisions of females compared to other traits, such as orange, and the importance of blue is not universally supported by all studies. The Japanese population therefore presents an ideal opportunity to re-examine the potential significance of blue as a mate choice cue in guppies. Mate choice experiments, in which female Japan blue guppies were given a choice between pairs of males that differed in their area of blue coloration but were matched for other traits, revealed that females prefer males with proportionately larger amounts of blue in their color patterns. We discuss possible factors, including sexual and ecological selection, which may have led to the evolution of unusually large areas of blue at the expense of other colors in Japan blue guppies. However, further studies are needed to distinguish between these scenarios.Web of Scienc

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    Multi-pathway Kinase Signatures of Multipotent Stromal Cells are Predictive for Osteogenic Differentiation

    Get PDF
    Bone marrow-derived multipotent stromal cells (MSCs) offer great promise for regenerating tissue. Although certain transcription factors have been identified in association with tendency toward particular MSC differentiation phenotypes, the regulatory network of key receptor-mediated signaling pathways activated by extracellular ligands that induce various differentiation responses remains poorly understood. Attempts to predict differentiation fate tendencies from individual pathways in isolation are problematic due to the complex pathway interactions inherent in signaling networks. Accordingly, we have undertaken a multivariate systems approach integrating experimental measurement of multiple kinase pathway activities and osteogenic differentiation in MSCs, together with computational analysis to elucidate quantitative combinations of kinase signals predictive of cell behavior across diverse contexts. In particular, for culture on polymeric biomaterial surfaces presenting tethered epidermal growth factor, type I collagen, neither, or both, we have found that a partial least-squares regression model yields successful prediction of phenotypic behavior on the basis of two principal components comprising the weighted sums of eight intracellular phosphoproteins: phospho-epidermal growth factor receptor, phospho-Akt, phospho-extracellular signal-related kinase 1/2, phospho-heat shock protein 27, phospho-c-Jun, phospho-glycogen synthase kinase 3α/β, phospho-p38, and phospho-signal transducer and activator of transcription 3. This combination provides the strongest predictive capability for 21-day differentiated phenotype status when calculated from day-7 signal measurements; day-4 and day-14 signal measurements are also significantly predictive, indicating a broad time frame during MSC osteogenesis wherein multiple pathways and states of the kinase signaling network are quantitatively integrated to regulate gene expression, cell processes, and ultimately, cell fate. STEM CELLS 2009;27:2804–2814National Institutes of Health (U.S.) (Grant NIH R01-GM059870-07)National Institutes of Health (U.S.) (Grant R01 DE019523- 10)United Negro College Fund ((UNCF)/Merck Postdoctoral Fellowship)Georgia Institute of Technology (Facilitating Academic Careers in Engineering and Sciences Fellowship

    A shared frequency set between the historical mid-latitude aurora records and the global surface temperature

    Full text link
    Herein we show that the historical records of mid-latitude auroras from 1700 to 1966 present oscillations with periods of about 9, 10-11, 20-21, 30 and 60 years. The same frequencies are found in proxy and instrumental global surface temperature records since 1650 and 1850, respectively and in several planetary and solar records. Thus, the aurora records reveal a physical link between climate change and astronomical oscillations. Likely, there exists a modulation of the cosmic ray flux reaching the Earth and/or of the electric properties of the ionosphere. The latter, in turn, have the potentiality of modulating the global cloud cover that ultimately drives the climate oscillations through albedo oscillations. In particular, a quasi 60-year large cycle is quite evident since 1650 in all climate and astronomical records herein studied, which also include an historical record of meteorite fall in China from 619 to 1943. These findings support the thesis that climate oscillations have an astronomical origin. We show that a harmonic constituent model based on the major astronomical frequencies revealed in the aurora records is able to forecast with a reasonable accuracy the decadal and multidecadal temperature oscillations from 1950 to 2010 using the temperature data before 1950, and vice versa. The existence of a natural 60-year modulation of the global surface temperature induced by astronomical mechanisms, by alone, would imply that at least 60-70% of the warming observed since 1970 has been naturally induced. Moreover, the climate may stay approximately stable during the next decades because the 60-year cycle has entered in its cooling phase.Comment: 18 pages, 11 figure

    Protein microarray: sensitive and effective immunodetection for drug residues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Veterinary drugs such as clenbuterol (CL) and sulfamethazine (SM<sub>2</sub>) are low molecular weight (<1000 Da) compounds, or haptens, that are difficult to develop immunoassays due to their low immunogenicity. In this study, we conjugated the drugs to ovalbumin to increase their immunogenicity for antiserum production in rabbits and developed a protein microarray immunoassay for detection of clenbuterol and sulfamethazine. The sensitivity of this approach was then compared to traditional ELISA technique.</p> <p>Results</p> <p>The artificial antigens were spotted on microarray slides. Standard concentrations of the compounds were added to compete with the spotted antigens for binding to the antisera to determine the IC<sub>50</sub>. Our microarray assay showed the IC<sub>50 </sub>were 39.6 ng/ml for CL and 48.8 ng/ml for SM<sub>2</sub>, while the traditional competitive indirect-ELISA (ci-ELISA) showed the IC<sub>50 </sub>were 190.7 ng/ml for CL and 156.7 ng/ml for SM<sub>2</sub>. We further validated the two methods with CL fortified chicken muscle tissues, and the protein microarray assay showed 90% recovery while the ci-ELISA had 76% recovery rate. When tested with CL-fed chicken muscle tissues, the protein microarray assay had higher sensitivity (0.9 ng/g) than the ci-ELISA (0.1 ng/g) for detection of CL residues.</p> <p>Conclusions</p> <p>The protein microarrays showed 4.5 and 3.5 times lower IC<sub>50 </sub>than the ci-ELISA detection for CL and SM<sub>2</sub>, respectively, suggesting that immunodetection of small molecules with protein microarray is a better approach than the traditional ELISA technique.</p

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
    corecore