11 research outputs found

    DMTS is an effective treatment in both inhalation and injection models for cyanide poisoning using unanesthetized mice

    No full text
    <p><b>Context:</b> Cyanide (CN) is a metabolic poison, halting ATP synthesis by inhibiting complex IV of the electron transport chain. If exposed at high enough concentrations, humans and most animals can die within minutes. Because time is a crucial factor in survival of CN poisoning, a rapidly bioavailable, nontoxic, easy to administer CN medical countermeasure could improve morbidity/mortality in a mass CN exposure scenario. The most likely route of exposure to CN is via inhalation.</p> <p><b>Objective:</b> This study examined the efficacy of a new formulation for dimethyl trisulfide (DMTS), a countermeasure which has shown promise as a treatment for CN poisoning, using both inhalation and injection models of CN exposure.</p> <p><b>Methods:</b> We developed a model of acute CN inhalation intoxication, using the highly toxic agent system from CH Technologies for nose-only exposure. Both continuous and discontinuous HCN exposure paradigms were implemented. For comparison, we also utilized a potassium cyanide (KCN) injection model. In all experiments, DMTS was administered as a cyanide countermeasure via intramuscular injection in unanesthetized mice.</p> <p><b>Results:</b> We found DMTS administration to be highly protective against both subcutaneous KCN and HCN inhalation toxicity. In the KCN injection model, DMTS afforded protection against 3.73 times the LD50 dose of KCN. In our HCN inhalation exposure model, mice challenged with LC50 HCN doses for the duration of either 10- or 40-minute exposure paradigms demonstrated improved survival in the presence of DMTS treatment (87.5% and 90.0% survival, respectively). Animals in the DMTS treatment groups of both lethal exposure models similarly exhibited improvement in observed toxic signs.</p> <p><b>Conclusion:</b> We show that a newly developed formulation of DMTS is efficacious within two lethal CN exposure mouse models (inhalation and injection) and is highly effective by intramuscular injection. Within these HCN studies, we demonstrate efficacy of DMTS in both continuous and discontinuous inhalation exposure models. </p

    Activated Alleles of the Schizosaccharomyces pombe gpa2+ Gα Gene Identify Residues Involved in GDP-GTP Exchange ▿

    No full text
    The Schizosaccharomyces pombe glucose/cyclic AMP (cAMP) signaling pathway includes the Gpa2-Git5-Git11 heterotrimeric G protein, whose Gpa2 Gα subunit directly binds to and activates adenylate cyclase in response to signaling from the Git3 G protein-coupled receptor. To study intrinsic and extrinsic regulation of Gpa2, we developed a plasmid-based screen to identify mutationally activated gpa2 alleles that bypass the loss of the Git5-Git11 Gβγ dimer to repress transcription of the glucose-regulated fbp1+ gene. Fifteen independently isolated mutations alter 11 different Gpa2 residues, with all but one conferring a receptor-independent activated phenotype upon integration into the gpa2+ chromosomal locus. Biochemical characterization of three activated Gpa2 proteins demonstrated an increased GDP-GTP exchange rate that would explain the mechanism of activation. Interestingly, the amino acid altered in the Gpa2(V90A) exchange rate mutant protein is in a region of Gpa2 with no obvious role in Gα function, thus extending our understanding of Gα protein structure-function relationships

    Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study

    Get PDF
    Background Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications. Methods We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC). Findings In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]). Interpretation In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required. Funding British Journal of Surgery Society
    corecore