3,461 research outputs found

    Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes

    Get PDF
    AimMeiofaunal communities that inhabit the marine benthos offer unique opportunities to simultaneously study the macroecology of numerous phyla that exhibit different life-history strategies. Here, we ask: (1) if the macroecology of meiobenthic communities is explained mainly by dispersal constraints or by environmental conditions; and (2) if levels of meiofaunal diversity surpass existing estimates based on morphological taxonomy. LocationUK and mainland European coast. MethodsNext-generation sequencing techniques (NGS; Roche 454 FLX platform) using 18S nuclear small subunit ribosomal DNA (rDNA) gene. Pyrosequences were analysed using AmpliconNoise followed by chimera removal using Perseus. ResultsRarefaction curves revealed that sampling saturation was only reached at 15% of sites, highlighting that the bulk of meiofaunal diversity is yet to be discovered. Overall, 1353 OTUs were recovered and assigned to 23 different phyla. The majority of sampled sites had c. 60-70 unique operational taxonomic units (OTUs) per site, indicating high levels of beta diversity. The environmental parameters that best explained community structure were seawater temperature, geographical distance and sediment size, but most of the variability (R-2=70%-80%) remains unexplained. Main conclusionsHigh percentages of endemic OTUs suggest that meiobenthic community composition is partly niche-driven, as observed in larger organisms, but also shares macroecological features of microorganisms by showing high levels of cosmopolitanism (albeit on a much smaller scale). Meiobenthic communities exhibited patterns of isolation by distance as well as associations between niche, latitude and temperature, indicating that meiobenthic communities result from a combination of niche assembly and dispersal processes. Conversely, isolation-by-distance patterns were not identified in the featured protists, suggesting that animals and protists adhere to radically different macroecological processes, linked to life-history strategies.Natural Environment Research Council (NERC) [NE/E001505/1, NE/F001266/1, MGF-167]; Portuguese Foundation for Science and Technology (FCT) [SFRH/BD/27413/2006, SFRH/BPD/80447/2014]; EPSRC [EP/H003851/1]; BBSRC CASE studentship; Unilever; Biotechnology and Biological Sciences Research Council [987347]; Engineering and Physical Sciences Research Council [EP/H003851/1]; Natural Environment Research Council [NE/F001290/1, NE/F001266/1, NE/E001505/1, NBAF010002]info:eu-repo/semantics/publishedVersio

    Observation of centimetre-scale argon diffusion in alkali feldspars: implications for <sup>40</sup>Ar/<sup>39</sup>Ar thermochronology

    Get PDF
    New data from a gem-quality feldspar from Itrongay, Madagascar, record naturally occurring 40Ar/39Ar age profiles which can be numerically modelled by invoking a single diffusion mechanism and show that microtexturally simple crystals are capable of recording complex thermal histories. We present the longest directly measured, naturally produced 40Ar*-closure profiles from a single, homogeneous orthoclase feldspar. These data appear to confirm the assumption that laboratory derived diffusion parameters are valid in nature and over geological timescales. Diffusion domains are defined by crystal faces and ancient cracks, thus in gem-quality feldspars the diffusion domain size equates to the physical grain size. The data also illustrate the potential of large, gem-quality feldspars to record detailed thermal histories over tens of millions of years and such samples should be considered for future studies on the slow cooling of continental crust

    Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup

    Get PDF
    Mutations of both nuclear and mitochondrial DNA (mtDNA)-encoded mitochondrial proteins can cause cardiomyopathy associated with mitochondrial dysfunction. Hence, the cardiac phenotype of nuclear DNA mitochondrial mutations might be modulated by mtDNA variation. We studied a 13-generation Mennonite pedigree with autosomal recessive myopathy and cardiomyopathy due to an SLC25A4 frameshift null mutation (c.523delC, p.Q175RfsX38), which codes for the heart-muscle isoform of the adenine nucleotide translocator-1. Ten homozygous null (adenine nucleotide translocator-1(-/-)) patients monitored over a median of 6 years had a phenotype of progressive myocardial thickening, hyperalaninemia, lactic acidosis, exercise intolerance, and persistent adrenergic activation. Electrocardiography and echocardiography with velocity vector imaging revealed abnormal contractile mechanics, myocardial repolarization abnormalities, and impaired left ventricular relaxation. End-stage heart disease was characterized by massive, symmetric, concentric cardiac hypertrophy; widespread cardiomyocyte degeneration; overabundant and structurally abnormal mitochondria; extensive subendocardial interstitial fibrosis; and marked hypertrophy of arteriolar smooth muscle. Substantial variability in the progression and severity of heart disease segregated with maternal lineage, and sequencing of mtDNA from five maternal lineages revealed two major European haplogroups, U and H. Patients with the haplogroup U mtDNAs had more rapid and severe cardiomyopathy than those with haplogroup H

    Recycling Argon through Metamorphic Reactions: the Record in Symplectites

    Get PDF
    The 40Ar/39Ar ages of metamorphic micas that crystallized at high temperatures are commonly interpreted as cooling ages, with grains considered to have lost 40Ar via thermally-driven diffusion into the grain boundary network. Recently reported laser-ablation data suggest that the spatial distribution of Ar in metamorphic micas does not always conform to the patterns predicted by diffusion theory and that despite high metamorphic temperatures, argon was not removed efficiently from the local system during metamorphic evolution. In the Western Gneiss Region (WGR), Norway, felsic gneisses preserve microtextural evidence for the breakdown of phengite to biotite and plagioclase symplectites during near isothermal decompression from c. 20–25 to c. 8–12 kbar at ~700°C. These samples provide an ideal natural laboratory to assess whether the complete replacement of one K-bearing mineral by another at high temperatures completely ‘resets’ the Ar clock, or whether there is some inheritance of 40Ar in the neo-crystallized phase. The timing of the high-temperature portion of the WGR metamorphic cycle has been well constrained in previous studies. However, the timing of cooling following the overprint is still much debated. In-situ laser ablation spot dating in phengite, biotite-plagioclase symplectites and coarser, texturally later biotite yielded 40Ar/39Ar ages that span much of the metamorphic cycle. Together these data show that despite residence at temperatures of ~700°C, Ar is not completely removed by diffusive loss or during metamorphic recrystallization. Instead, Ar released during phengite breakdown appears to be partially reincorporated into the newly crystallizing biotite and plagioclase (or is trapped in fluid inclusions in those phases) within a close system. Our data show that the microtextural and petrographic evolution of the sample being dated provides a critical framework in which local 40Ar recycling can be tracked, thus potentially allowing 40Ar/39Ar dates to be linked more accurately to metamorphic history

    The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries

    Full text link
    Observations indicate that nearly all galaxies contain supermassive black holes (SMBHs) at their centers. When galaxies merge, their component black holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational waves (GWs) that can be detected by pulsar timing arrays (PTAs). We have searched the recently-released North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11-year data set for GWs from individual SMBHBs in circular orbits. As we did not find strong evidence for GWs in our data, we placed 95\% upper limits on the strength of GWs from such sources as a function of GW frequency and sky location. We placed a sky-averaged upper limit on the GW strain of h0<7.3(3)×1015h_0 < 7.3(3) \times 10^{-15} at fgw=8f_\mathrm{gw}= 8 nHz. We also developed a technique to determine the significance of a particular signal in each pulsar using ``dropout' parameters as a way of identifying spurious signals in measurements from individual pulsars. We used our upper limits on the GW strain to place lower limits on the distances to individual SMBHBs. At the most-sensitive sky location, we ruled out SMBHBs emitting GWs with fgw=8f_\mathrm{gw}= 8 nHz within 120 Mpc for M=109M\mathcal{M} = 10^9 \, M_\odot, and within 5.5 Gpc for M=1010M\mathcal{M} = 10^{10} \, M_\odot. We also determined that there are no SMBHBs with M>1.6×109M\mathcal{M} > 1.6 \times 10^9 \, M_\odot emitting GWs in the Virgo Cluster. Finally, we estimated the number of potentially detectable sources given our current strain upper limits based on galaxies in Two Micron All-Sky Survey (2MASS) and merger rates from the Illustris cosmological simulation project. Only 34 out of 75,000 realizations of the local Universe contained a detectable source, from which we concluded it was unsurprising that we did not detect any individual sources given our current sensitivity to GWs.Comment: 10 pages, 11 figures. Accepted by Astrophysical Journal. Please send any comments/questions to S. J. Vigeland ([email protected]

    Network Archaeology: Uncovering Ancient Networks from Present-day Interactions

    Get PDF
    Often questions arise about old or extinct networks. What proteins interacted in a long-extinct ancestor species of yeast? Who were the central players in the Last.fm social network 3 years ago? Our ability to answer such questions has been limited by the unavailability of past versions of networks. To overcome these limitations, we propose several algorithms for reconstructing a network's history of growth given only the network as it exists today and a generative model by which the network is believed to have evolved. Our likelihood-based method finds a probable previous state of the network by reversing the forward growth model. This approach retains node identities so that the history of individual nodes can be tracked. We apply these algorithms to uncover older, non-extant biological and social networks believed to have grown via several models, including duplication-mutation with complementarity, forest fire, and preferential attachment. Through experiments on both synthetic and real-world data, we find that our algorithms can estimate node arrival times, identify anchor nodes from which new nodes copy links, and can reveal significant features of networks that have long since disappeared.Comment: 16 pages, 10 figure

    Evidence for excess argon during high pressure metamorphism in the Dora Maira Massif (Western Alps, Italy), using an ultra-violet laser ablation microprobe (super 40) Ar- (super 39) Ar technique

    Get PDF
    International audienceThe age of Ultra-high pressure metamorphism and early cooling remains controversial in the Alps. In a new approach to the problem, samples from the undeformed Hercynian metagranite, Brossasco, were studied using an ultra-violet laser ablation microprobe technique for 40Ar-39Ar dating. The results demonstrate the frequent occurence of excess argon with high 40Ar/36Ar ratios (1000-10000) and a strong relationship between apparent ages and metamorphic textures. The highest excess argon ratios are always associated with high closure temperature minerals or large diffusion domains within single mineral phases. The best interpretation of this relationship seems to be that excess argon was incorporated in all phases during the high pressure event, then mixed with an atmospheric component during rapid cooling and retrogression, producing a wide range of argon concentrations and 40Ar/36Ar ratios. In the present case, some ages in the range 60-110 Ma could be explained by the presence of excess argon incorporated around 40-50 Ma ago. Similar results found in other high-pressure terrains in the Alps may reconcile the argon geochronometer with other systems such as Rb/Sr, U/Pb or Sm/Nd. This study therefore calls for an increasing use of high resolution in-situ sampling techniques to clarify the meaning of 40Ar/39Ar ages in many high pressure terrains
    corecore