286 research outputs found
Ultra-sensitive and Wide Bandwidth Thermal Measurements of Graphene at Low Temperatures
Graphene is a material with remarkable electronic properties and exceptional
thermal transport properties near room temperature, which have been well
examined and understood. However at very low temperatures the thermodynamic and
thermal transport properties are much less well explored and somewhat
surprisingly, is expected to exhibit extreme thermal isolation. Here we
demonstrate an ultra-sensitive, wide-bandwidth measurement scheme to probe the
thermal transport and thermodynamic properties of the electron gas of graphene.
We employ Johnson noise thermometry at microwave frequency to sensitively
measure the temperature of the electron gas with resolution of
and a bandwidth of 80 MHz. We have measured the electron-phonon coupling from
2-30 K at a charge density of . Utilizing bolometric
mixing, we have sensed temperature oscillations with period of 430 ps and have
determined the heat capacity of the electron gas to be at 5 K which is consistent with that of a two dimensional,
Dirac electron gas. These measurements suggest that graphene-based devices
together with wide bandwidth noise thermometry can generate substantial
advances in the areas of ultra-sensitive bolometry, calorimetry, microwave and
terahertz photo-detection, and bolometric mixing for applications in areas such
as observational astronomy and quantum information and measurement.Comment: 8 pages, 4 figure
Putting mechanics into quantum mechanics
Nanoelectromechanical structures are starting to approach the ultimate quantum mechanical limits for detecting and exciting motion at the nanoscale. Nonclassical states of a mechanical resonator are also on the horizon
Quantum Nondemolition Squeezing of a Nanomechanical Resonator
We show that the nanoresonator position can be squeezed significantly below
the ground state level by measuring the nanoresonator with a quantum point
contact or a single-electron transistor and applying a periodic voltage across
the detector. The mechanism of squeezing is basically a generalization of
quantum nondemolition measurement of an oscillator to the case of continuous
measurement by a weakly coupled detector. The quantum feedback is necessary to
prevent the ``heating'' due to measurement back-action. We also discuss a
procedure of experimental verification of the squeezed state.Comment: 9 pages, 3 figure
Macroscopic quantum resonators (MAQRO): 2015 Update
Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schrödingerâs cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored âquantum-classicalâ transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments
Nanoscale, Phonon-Coupled Calorimetry with Sub-Attojoule/Kelvin Resolution
We have developed an ultrasensitive nanoscale calorimeter that enables heat capacity measurements upon minute, externally affixed (phonon-coupled) samples at low temperatures. For a 5 s measurement at 2 K, we demonstrate an unprecedented resolution of ÎC ~ 0.5 aJ/K (~36 000 k_B). This sensitivity is sufficient to enable heat capacity measurements upon zeptomole-scale samples or upon adsorbates with sub-monolayer coverage across the minute cross sections of these devices. We describe the fabrication and operation of these devices and demonstrate their sensitivity by measuring an adsorbed ^4He film with optimum resolution of ~3 Ă 10^(-5) monolayers upon an active surface area of only ~1.2 Ă 10^(-9) m^2
Parametric Amplification and Back-Action Noise Squeezing by a Qubit-Coupled Nanoresonator
We demonstrate the parametric amplification and noise squeezing of nanomechanical motion utilizing dispersive coupling
to a Cooper-pair box qubit. By modulating the qubit bias and resulting mechanical resonance shift, we achieve gain of 30 dB and
noise squeezing of 4 dB. This qubit-mediated effect is 3000 times more effective than that resulting from the weak nonlinearity of
capacitance to a nearby electrode. This technique may be used to prepare nanomechanical squeezed states
Quantum Communication, Sensing and Measurement in Space
The main theme of the conclusions drawn for classical communication systems
operating at optical or higher frequencies is that there is a wellâunderstood
performance gain in photon efficiency (bits/photon) and spectral efficiency
(bits/s/Hz) by pursuing coherentâstate transmitters (classical ideal laser light)
coupled with novel quantum receiver systems operating near the Holevo limit (e.g.,
joint detection receivers). However, recent research indicates that these receivers
will require nonlinear and nonclassical optical processes and components at the
receiver. Consequently, the implementation complexity of Holevoâcapacityapproaching
receivers is not yet fully ascertained. Nonetheless, because the
potential gain is significant (e.g., the projected photon efficiency and data rate of
MIT Lincoln Laboratory's Lunar Lasercom Demonstration (LLCD) could be achieved
with a factorâofâ20 reduction in the modulation bandwidth requirement), focused
research activities on groundâreceiver architectures that approach the Holevo limit
in spaceâcommunication links would be beneficial.
The potential gains resulting from quantumâenhanced sensing systems in space
applications have not been laid out as concretely as some of the other areas
addressed in our study. In particular, while the study period has produced several
interesting highârisk and highâpayoff avenues of research, more detailed seedlinglevel
investigations are required to fully delineate the potential return relative to
the stateâofâtheâart. Two prominent examples are (1) improvements to pointing,
acquisition and tracking systems (e.g., for optical communication systems) by way
of quantum measurements, and (2) possible weakâvalued measurement techniques
to attain highâaccuracy sensing systems for in situ or remoteâsensing instruments.
While these concepts are technically sound and have very promising benchâtop
demonstrations in a lab environment, they are not mature enough to realistically
evaluate their performance in a spaceâbased application. Therefore, it is
recommended that future work follow small focused efforts towards incorporating
practical constraints imposed by a space environment.
The space platform has been well recognized as a nearly ideal environment for some
of the most precise tests of fundamental physics, and the ensuing potential of
scientific advances enabled by quantum technologies is evident in our report. For
example, an exciting concept that has emerged for gravityâwave detection is that the
intermediate frequency band spanning 0.01 to 10 Hzâwhich is inaccessible from
the groundâcould be accessed at unprecedented sensitivity with a spaceâbased
interferometer that uses shorter arms relative to stateâofâtheâart to keep the
diffraction losses low, and employs frequencyâdependent squeezed light to surpass
the standard quantum limit sensitivity. This offers the potential to open up a new
window into the universe, revealing the behavior of compact astrophysical objects
and pulsars. As another set of examples, research accomplishments in the atomic
and optics fields in recent years have ushered in a number of novel clocks and
sensors that can achieve unprecedented measurement precisions. These emerging
technologies promise new possibilities in fundamental physics, examples of which
are tests of relativistic gravity theory, universality of free fall, frameâdragging
precession, the gravitational inverseâsquare law at micron scale, and new ways of gravitational wave detection with atomic inertial sensors. While the relevant
technologies and their discovery potentials have been well demonstrated on the
ground, there exists a large gap to spaceâbased systems. To bridge this gap and to
advance fundamentalâphysics exploration in space, focused investments that further
mature promising technologies, such as spaceâbased atomic clocks and quantum
sensors based on atomâwave interferometers, are recommended.
Bringing a group of experts from diverse technical backgrounds together in a
productive interactive environment spurred some unanticipated innovative
concepts. One promising concept is the possibility of utilizing a spaceâbased
interferometer as a frequency reference for terrestrial precision measurements.
Spaceâbased gravitational wave detectors depend on extraordinarily low noise in
the separation between spacecraft, resulting in an ultraâstable frequency reference
that is several orders of magnitude better than the state of the art of frequency
references using terrestrial technology. The next steps in developing this promising
new concept are simulations and measurement of atmospheric effects that may limit
performance due to nonâreciprocal phase fluctuations.
In summary, this report covers a broad spectrum of possible new opportunities in
space science, as well as enhancements in the performance of communication and
sensing technologies, based on observing, manipulating and exploiting the
quantumâmechanical nature of our universe. In our study we identified a range of
exciting new opportunities to capture the revolutionary capabilities resulting from
quantum enhancements. We believe that pursuing these opportunities has the
potential to positively impact the NASA mission in both the near term and in the
long term. In this report we lay out the research and development paths that we
believe are necessary to realize these opportunities and capitalize on the gains
quantum technologies can offer
Coupling a nanomechanical resonator to a Cooper-pair-box qubit
We demonstrate dispersive coupling between a Cooper-pair box (CPB) qubit and a VHF NEMS (nanoelectromechanical systems) resonator. The observed interaction strength is sufficient to pursue more advanced experiments to elicit quantum behavior in NEMS
Nonlinear Quantum Dynamics
The vast majority of the literature dealing with quantum dynamics is
concerned with linear evolution of the wave function or the density matrix. A
complete dynamical description requires a full understanding of the evolution
of measured quantum systems, necessary to explain actual experimental results.
The dynamics of such systems is intrinsically nonlinear even at the level of
distribution functions, both classically as well as quantum mechanically. Aside
from being physically more complete, this treatment reveals the existence of
dynamical regimes, such as chaos, that have no counterpart in the linear case.
Here, we present a short introductory review of some of these aspects, with a
few illustrative results and examples.Comment: 13 pages, 3 figures, invited talk at the NATO Advanced Workshop,
"Nonlinear Dynamics and Fundamental Interactions," (October, 2004, Tashkent
- âŠ