37 research outputs found
Improved design of all-optical processor for modular arithmetic
A new improved design of an all-optical processor that performs modular arithmetic is presented. The modulo-processor is based on all-optical circuit of interconnected semiconductor optical amplifier logic gates. The design allows processing times of less than 1 µs for 16-bit operation at 10 Gb/s and up to 32-bit operation at 100 Gb/s
Characterization of a multiresonance ring resonator-based optical device
We describe the linear and nonlinear transfer characteristics of a multi-resonance optical device consisting of two ring resonators coupled one to another and to a waveguide. The propagation effects displayed by the device are compared with those of a sequence of a waveguide-coupled fundamental ring resonators
Design of fast core node processor for packet forwarding without header modification in optical networks
We present a design of a fast all-optical core-node processor that performs packet-forwarding in optical networks without header-modification. The design is based on bit-serial architecture using TOADs as logic-gates that perform modulo-arithmetic to forward packets
Upgrading legacy long-haul WDM systems through unbalancing the proportion of 1s and 0s in the transmitted data
We present experimental results for wavelength-division multiplexed (WDM) transmission performance using unbalanced proportions of 1s and 0s in pseudo-random bit sequence (PRBS) data. This investigation simulates the effect of local, in time, data unbalancing which occurs in some coding systems such as forward error correction when extra bits are added to the WDM data stream. We show that such local unbalancing, which would practically give a time-dependent error-rate, can be employed to improve the legacy long-haul WDM system performance if the system is allowed to operate in the nonlinear power region. We use a recirculating loop to simulate a long-haul fibre system
Demonstration and characterisation of a non-inverting all-optical read/write regenerative memory
An all-optical regenerative memory device using a single loop mirror and a semiconductor optical amplifier is experimentally demonstrated. This configuration has potential for a low power all-optical stable memory device with non-inverting characteristics where packets are stored by continuously injecting the regenerated data back into the loop
Hybrid squeezing of solitonic resonant radiation in photonic crystal fibers
We report on the existence of a novel kind of squeezing in photonic crystal
fibers which is conceptually intermediate between the four-wave mixing induced
squeezing, in which all the participant waves are monochromatic waves, and the
self-phase modulation induced squeezing for a single pulse in a coherent state.
This hybrid squeezing occurs when an arbitrary short soliton emits
quasi-monochromatic resonant radiation near a zero group velocity dispersion
point of the fiber. Photons around the resonant frequency become strongly
correlated due to the presence of the classical soliton, and a reduction of the
quantum noise below the shot noise level is predicted.Comment: 5 pages, 2 figure
Bit error rate estimation methods for QPSK CO-OFDM transmission
Coherent optical orthogonal frequency division multiplexing (CO-OFDM) is an attractive transmission technique to virtually eliminate intersymbol interference caused by chromatic dispersion and polarization-mode dispersion. Design, development, and operation of CO-OFDM systems require simple, efficient, and reliable methods of their performance evaluation. In this paper, we demonstrate an accurate bit error rate estimation method for QPSK CO-OFDM transmission based on the probability density function of the received QPSK symbols. By comparing with other known approaches, including data-aided and nondata-aided error vector magnitude, we show that the proposed method offers the most accurate estimate of the system performance for both single channel and wavelength division multiplexing QPSK CO-OFDM transmission systems
Random walks and random numbers from supercontinuum generation
We report a numerical study showing how the random intensity and phase fluctuations across the bandwidth of a broadband optical supercontinuum can be interpreted in terms of the random processes of random walks and Lévy flights. We also describe how the intensity fluctuations can be applied to physical random number generation. We conclude that the optical supercontinuum provides a highly versatile means of studying and generating a wide class of random processes at optical wavelengths
Monitoring long distance WDM communication lines using a high-loss loopback supervisory system
In this paper, we present experimental results for monitoring long distance WDM communication links using a line monitoring system suitable for legacy optically amplified long-haul undersea systems. This monitoring system is based on setting up a simple, passive, low cost high-loss optical loopback circuit at each repeater that provides a connection between the existing anti-directional undersea fibres, and can be used to define fault location. Fault location is achieved by transmitting a short pulse supervisory signal along with the WDM data signals where a portion of the overall signal is attenuated and returned to the transmit terminal by the loopback circuit. A special receiver is used at the terminal to extract the weakly returned supervisory signal where each supervisory signal is received at different times corresponding to different optical repeaters. Therefore, the degradation in any repeater appears on its corresponding supervisory signal level. We use a recirculating loop to simulate a 4600 km fibre link, on which a high-loss loopback supervisory system is implemented. Successful monitoring is accomplished through the production of an appropriate supervisory signal at the terminal that is detected and identified in a satisfactory time period after passing through up to 45 dB attenuation in the loopback circuit
Comparison of bit error rate estimation methods for QPSK CO-OFDM transmission
In this letter, we experimentally study the statistical properties of a received QPSK modulated signal and compare various bit error rate (BER) estimation methods for coherent optical orthogonal frequency division multiplexing transmission. We show that the statistical BER estimation method based on the probability density function of the received QPSK symbols offers the most accurate estimate of the system performance