1,472 research outputs found
Recommended from our members
Attributes of Society of Genitourinary Reconstructive Surgeons Fellows and Early Career Trajectory of the Recent Graduates
A Chandra X-ray Study of Cygnus A - II. The Nucleus
We report Chandra ACIS and quasi-simultaneous RXTE observations of the
nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the
properties of the active nucleus. In the Chandra observation, the hard (> a few
keV) X-ray emission is spatially unresolved with a size \approxlt 1 arcsec (1.5
kpc, H_0 = 50 km s^-1 Mpc^-1) and coincides with the radio and near infrared
nuclei. In contrast, the soft (< 2 keV) emission exhibits a bi-polar nebulosity
that aligns with the optical bi-polar continuum and emission-line structures
and approximately with the radio jet. In particular, the soft X-ray emission
corresponds very well with the [O III] \lambda 5007 and H\alpha + [N II]
\lambda\lambda 6548, 6583 nebulosity imaged with HST. At the location of the
nucleus there is only weak soft X-ray emission, an effect that may be intrinsic
or result from a dust lane that crosses the nucleus perpendicular to the source
axis. The spectra of the various X-ray components have been obtained by
simultaneous fits to the 6 detectors. The compact nucleus is detected to 100
keV and is well described by a heavily absorbed power law spectrum with
\Gamma_h = 1.52^{+0.12}_{-0.12} (similar to other narrow line radio galaxies)
and equivalent hydrogen column N_H (nuc) = 2.0^{+0.1}_{-0.2} \times 10^{23}
cm^-2.
(Abstract truncated).Comment: To be published in the Astrophysical Journal, v564 January 1, 2002
issue; 34 pages, 11 figures (1 color
Deep splicing plasticity of the human adenovirus type 5 transcriptome drives virus evolution
Viral genomes have high gene densities and complex transcription strategies rendering transcriptome analysis through short-read RNA-seq approaches problematic. Adenovirus transcription and splicing is especially complex. We used long-read direct RNA sequencing to study adenovirus transcription and splicing during infection. This revealed a previously unappreciated complexity of alternative splicing and potential for secondary initiating codon usage. Moreover, we find that most viral transcripts tend to shorten polyadenylation lengths as infection progresses. Development of an open reading frame centric bioinformatics analysis pipeline provided a deeper quantitative and qualitative understanding of adenovirus’s genetic potential. Across the viral genome adenovirus makes multiple distinctly spliced transcripts that code for the same protein. Over 11,000 different splicing patterns were recorded across the viral genome, most occurring at low levels. This low-level use of alternative splicing patterns potentially enables the virus to maximise its coding potential over evolutionary timescales
Solutions of Higher Dimensional Gauss-Bonnet FRW Cosmology
We examine the effect on cosmological evolution of adding a Gauss-Bonnet term
to the standard Einstein-Hilbert action for a (1 + 3)+ d dimensional
Friedman-Robertson-Walker (FRW) metric. By assuming that the additional
dimensions compactify as a power law as the usual 3 spatial dimensions expand,
we solve the resulting dynamical equations and find that the solution may be of
either de Sitter or Kasner form depending upon whether the Gauss-Bonnet term or
the Einstein term dominates.Comment: 10 pages, references added/corrected, accepted for publication in
General Relativity and Gravitatio
First principles investigation of manganese catalyst structure and coordination in the p -xylene oxidation process
The oxidation of p-xylene to terephtalic acid has global importance, with the product used as a precursor for polyethylene terephthalate (PET). The oxidation of p-xylene proceeds via a redox cascade that involves cobalt, manganese, and bromide, with a synergy allowing for high selectivity and reactivity; however, the equilibrium coordination environment of the catalyst species remains uncertain due to the hostile industrial operating conditions. To build knowledge of the catalyst speciation and develop understanding of the reaction process, a density functional theory approach is applied herein to determine the static and dynamic properties of the divalent (reduced) and trivalent (oxidized) manganese catalysts in the redox cascade. The Gibbs free energy has been calculated for manganese as a function of ligands in the inner coordination sphere, with the octahedrally-coordinated Mn(OAc)2(HOAc)2 and Mn(OAc)3(H2O)1 identified as the most thermodynamically stable coordination environments for Mn(ii) and Mn(iii), respectively. Dynamic properties of these catalysts in the presence of an explicit solvent environment have been determined using first principles molecular dynamics simulations. The simulations indicate 0–2 coordinating water ligands are present in the inner coordination sphere under standard industrial temperatures and pressures. The dynamical simulations have been extended to include HBr, which couples with Mn in the redox cascade, and the bromide species does not enter in the inner-coordination sphere of the oxidized Mn(iii) catalyst, providing evidence that the electron transfer between bromide and Mn(iii) proceeds via an outer sphere mechanism. Our results suggest that oxidation of Mn(ii) has the potential for facilitating L-type ligand exchange in the inner-sphere coordination environment. The results are a platform for developing a more complete knowledge of the reaction mechanism at the atomistic scale
A dearth of planetary transits in the direction of NGC 6940
We present results of our survey for planetary transits in the field of NGC 6940. We think nearly all of our observed stars are field stars. We have obtained high precision (∼3–10 mmag at the bright end) photometric observations of ∼50 000 stars spanning 18 nights in an attempt to identify low-amplitude and short-period transit events. We have used a matched filter analysis to identify 14 stars that show multiple events and four stars that show single transits. Of these 18 candidates, we have identified two that should be further researched. However, none of the candidates is a convincing hot Jupiter
Qatar-2: A K dwarf orbited by a transiting hot Jupiter and a more massive companion in an outer orbit
We report the discovery and initial characterization of Qatar-2b, a hot
Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short
period, P_ b = 1.34 days. The mass and radius of Qatar-2b are M_p = 2.49 M_j
and R_p = 1.14 R_j, respectively. Radial-velocity monitoring of Qatar-2 over a
span of 153 days revealed the presence of a second companion in an outer orbit.
The Systemic Console yielded plausible orbits for the outer companion, with
periods on the order of a year and a companion mass of at least several M_j.
Thus Qatar-2 joins the short but growing list of systems with a transiting hot
Jupiter and an outer companion with a much longer period. This system
architecture is in sharp contrast to that found by Kepler for multi-transiting
systems, which are dominated by objects smaller than Neptune, usually with
tightly spaced orbits that must be nearly coplanar
Zoster-Associated Prothrombotic Plasma Exosomes and Increased Stroke Risk
Herpes zoster (HZ; shingles) caused by varicella zoster virus reactivation increases stroke risk for up to 1 year after HZ. The underlying mechanisms are unclear, however, the development of stroke distant from the site of zoster (eg, thoracic, lumbar, sacral) that can occur months after resolution of rash points to a long-lasting, virus-induced soluble factor (or factors) that can trigger thrombosis and/or vasculitis. Herein, we investigated the content and contributions of circulating plasma exosomes from HZ and non-HZ patient samples. Compared with non-HZ exosomes, HZ exosomes (1) contained proteins conferring a prothrombotic state to recipient cells and (2) activated platelets leading to the formation of platelet-leukocyte aggregates. Exosomes 3 months after HZ yielded similar results and also triggered cerebrovascular cells to secrete the proinflammatory cytokines, interleukin 6 and 8. These results can potentially change clinical practice through addition of antiplatelet agents for HZ and initiatives to increase HZ vaccine uptake to decrease stroke risk
Acoustic and oceanographic observations and configuration information for the WHOI moorings from the SW06 experiment
This document describes data, sensors, and other useful information pertaining to the moorings that were
deployed from the R/V Knorr from July 24th to August 4th, 2006 in support of the SW06 experiment. The
SW06 experiment was a large, multi-disciplinary effort performed 100 miles east of the New Jersey coast. A
total of 62 acoustic and oceanographic moorings were deployed and recovered. The moorings were deployed in
a “T” geometry to create an along-shelf path along the 80 meter isobath and an across-shelf path starting at 600
meters depth and going shoreward to a depth of 60 meters. A cluster of moorings was placed at the
intersection of the two paths to create a dense sensor-populated area to measure a 3-dimensional physical
oceanography. Environmental moorings were deployed along both along-shelf and across-shelf paths to
measure the physical oceanography along those paths. Moorings with acoustic sources were placed at the outer
ends of the “T” to propagate various signals along these paths. Five single hydrophone receivers were
positioned on the across shelf path and a vertical and horizontal hydrophone array was positioned at the
intersection of the “T” to get receptions from all the acoustics assets that were used during SW06.Funding was provided by the Office of Naval Research under Contract
No. N00014-04-1014
- …